mcp 客户端sse远程调用服务端与本地大模型集成实例

        昨天的案例基于mcp stdio本地调用,即mcp的客户端与服务端位于同一台机器上。今天的实例基于mcp服务端与客户端位于不同机器,二者通过sse协议进行通信。当然,对于大模型来说,也可以是远程的机器,因为对大模型的访问是通过标准的http协议进行的。我这为了便于实现,均采用同一台机器,大家在实际部署中,将“localhost"改为实际的ip地址就好。

        本例也将支持多个mcp server,大模型在对话与推理过程中,会用所有mcp server的工具来理解上下文语境。按大模型发展来看,mcp应该会成为应用系统的必须,在此之前是function_calling。大模型今后就是一个底座,对用户是隐藏的。而所有的业务系统和领域小模型会通过mcp万象互联。除非要非常精确与高效,且要边缘部署,才会需要对大模型进行微调与蒸馏,否则mcp应该是一种最佳的部署模式。现在诸如langchain之类的的本地知识库外挂方案,其实并没有把数据集微调到大模型中,只是一种变相的mcp方式。如今mcp已成气候,修炼大成。只是国内的大模型支持微调function的极少,还是openai chatGPT走到了最前面。一旦普遍发布了能微调function的大模型,mcp将大行其道。是以圣人处无为之事,行不言之教,我想大模型当之无愧吧。

1 本地大模型启动

2

<think>好的,我现在要处理用户关于MCP协议如何调用大模型架构的问题。首先,我需要回顾一下MCP的基本概念和架构。根据用户提供的引用[^1],MCP(Model Context Protocol)是一种协议,旨在标准化大模型外部系统之间的交互流程,提高协作效率。接下来,我需要理解用户的具体需求,他们想知道MCP在调用大模型架构时的具体方案。 首先,我应该从MCP的总体架构入手。引用中提到,MCP分为接口层、上下文管理层、协议适配层和模型接口层。接口层负责标准化的API,这可能涉及到RESTful或gRPC接口。上下文管理层处理对话历史、用户偏好等信息,这对于维持交互的连贯性很重要。协议适配层负责将不同模型接口统一,而模型接口层直接对接各大模型平台,如GPT或BERT。 然后,我需要考虑MCP调用大模型的具体步骤。可能包括请求封装、上下文管理、协议转换、模型调用和结果处理。每个步骤需要详细展开,例如在请求封装阶段,如何将用户输入转化为符合MCP的请求体,可能需要示例来说明结构。上下文管理部分要说明如何利用缓存机制或数据库来维护上下文,确保模型理解当前对话的状态。 协议适配层的作用是关键,因为它需要将MCP的请求转换成不同模型所需的格式。例如,调用GPT-4和PaLM可能需要不同的参数,适配层需要处理这些差异。模型接口层的调用方式可能涉及同步或异步请求,以及如何处理超时和重试机制。 另外,用户可能关心调用方案的示例,比如使用Python的伪代码来展示整个过程。这需要展示如何通过MCP的API发送请求,管理上下文,并处理响应。同时,还需要提到优化策略,如缓存、负载均衡和异步处理,这些能提升性能和可靠性。 最后,需要确保回答结构清晰,分点说明,并引用提供的资料。可能还需要验证每个步骤是否符合MCP的设计目标,比如标准化、降低耦合、提升可扩展性等。此外,用户的问题可能涉及技术细节,所以需要保持解释的易懂性,避免过于晦涩的术语,但又要准确反映MCP的工作原理。</think>### MCP协议调用大模型架构的方案 MCP(Model Context Protocol)通过标准化接口和上下文管理机制,实现对大模型架构的高效调用。以下是其核心调用方案的分步说明: --- #### 1. **接口层标准化** MCP通过**RESTful API**或**gRPC接口**定义统一的调用入口,例如: ```python # 示例:Python调用MCP接口 import requests payload = { "model": "gpt-4", "input": "用户输入文本", "context_id": "会话标识符" } response = requests.post("https://mcp-gateway/api/v1/invoke", json=payload) ``` 此层负责参数校验、身份认证和流量控制。 --- #### 2. **上下文管理** MCP通过**上下文标识符(context_id)** 维护对话状态: - 存储历史对话记录、用户偏好、领域知识 - 使用缓存(如Redis)或数据库实现跨请求的上下文关联 - 关键技术:通过键值对存储实现低延迟访问 --- #### 3. **协议适配层转换** 将标准化请求转换为目标模型所需的格式: | 目标模型 | 转换逻辑示例 | |---------|--------------| | GPT-4 | 添加`temperature=0.7`参数 | | BERT | 添加`[CLS]`标记 | | PaLM | 转换tensor格式 | 此层通过插件机制支持多模型扩展。 --- #### 4. **模型调用执行** 通过**模型接口层**对接具体实现: ```mermaid graph LR A[MCP协议] --> B{模型路由} B -->|NLP任务| C[GPT-4] B -->|图像生成| D[StableDiffusion] B -->|语音合成| E[WaveNet] ``` 支持同步/异步调用模式,超时时间可配置。 --- #### 5. **结果处理返回** 对原始模型输出进行: 1. 标准化格式封装(JSON Schema校验) 2. 敏感信息过滤 3. 性能指标采集(延迟、token消耗) 返回示例: ```json { "output": "模型生成内容", "context_id": "更新后的会话标识", "metrics": {"latency": 450ms} } ``` --- ### 优化策略 1. **缓存复用**:对高频请求结果进行缓存(TTL可配置) 2. **负载均衡**:基于模型实例负载动态路由 3. **异步流水线**:分离请求接收、计算、返回三个阶段 4. **流量降级**:在过载时自动切换轻量模型 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

vandh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值