上篇文章介绍了简单容易理解的MCP server实现-CSDN博客 ,市面上很多应用可以调用别人写的MCP,如cherry-studio/Claude Desktop/ Cline等。但毕竟只能UI上操作。作为程序员自然通过程序调用的方式,使应用更加千变万化。
我们基于上篇的server,来实现client,通过大模型调用server的function
import os
from typing import List,Dict, Any
from langchain.agents import create_tool_calling_agent, AgentExecutor
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
import asyncio
from langchain_mcp_adapters.client import MultiServerMCPClient
# 定义远程天气MCP 服务
weather_mcp_server_config ={
"url":"http://127.0.0.1:8000/sse",
"transport":"sse"
}
# 定义本地计算MCP 服务
math_mcp_server_config ={
"command": "python",
"args": ["mcp_local_server.py"],
"transport":"stdio"
}
from langchain_modelscope import ModelScopeChatEndpoint
llm = ModelScopeChatEndpoint(model="Qwen/Qwen2.5-Coder-32B-Instruct")
prompt= ChatPromptTemplate.from_messages([
('system','你是一个智能助手,尽可能的调用工具回答用户的问题'),
MessagesPlaceholder(variable_name='chat_history', optional=True),
('human','{input}'),
MessagesPlaceholder(variable_name='agent_scratchpad', optional=True)
])
async def execute_workflow(user_input: str) -> Any:
"""执行工作流的函数"""
inputs ={"input": user_input}
client = MultiServerMCPClient(
{
"math": math_mcp_server_config, #添加多个MCP服务
"weather": weather_mcp_server_config
}
)
all_tools = await client.get_tools()
print(all_tools)
agent = create_tool_calling_agent(llm, all_tools, prompt)
executor = AgentExecutor(agent=agent, tools=all_tools)
response = await executor.ainvoke(input=inputs)
result = response["output"]
print(result)
return result
if __name__ == '__main__':
asyncio.run(execute_workflow("北京天气怎样?"))
asyncio.run(execute_workflow("帮我计算计算两个数字20和12的密集是多少?")) # 保证调用本地mcp的语句
大模型我们还用免费的modelscope(表扬阿里提供了AI学习成长环境),环境变量自己设好。运行前,把server运行起来。一个远程sse服务和本地stdio的配置已写在代码里。同样可以配置更多别人写的server。大模型运行时将判断是否调用服务
上面可以看到所有服务的tools的功能会提前拉出来。
理解了实现了以后,是不是感觉现在可以随意调用别人的MCP了