量子机器学习入门与发展
量子机器学习概述
随着全球数据量的飞速增长,经典计算机处理数据的能力逐渐受限。在不久的将来,经典计算机可能难以处理超高维度的数据,量子机器学习算法将发挥重要作用。量子机器学习由Lloyd、Mohseni和Rebentrost于2013年提出,它是量子算法与经典机器学习算法的融合,也被称为量子增强机器学习。目前在解决线性方程组、量子增强强化学习、量子神经网络和量子采样技术等方面有诸多应用,尤其是在金融相关行业。
根据数据类型和数据处理设备,量子机器学习方法可分为四大类:
| 类型 | 数据类型 | 处理设备 | 说明 |
| ---- | ---- | ---- | ---- |
| CC | 经典数据 | 经典计算机 | 即经典机器学习算法 |
| QC | 量子数据 | 经典计算机 | 如区分不同量子态和学习多体量子系统中的相变 |
| CQ | 经典数据 | 量子计算机 | 利用量子计算机搜索经典数据集中的潜在模式、提取信息和进行推断 |
| QQ | 量子数据 | 量子计算机 | 以量子计算机为主要处理设备处理量子数据 |
当前主要处理CQ情况,即使用量子计算机处理大型经典数据集。要在量子计算机上使用经典数据,需要通过编码机制将经典数据编码为量子态。以下是几种常见的编码方法:
1. 基编码 :将二进制数据编码为量子态的叠加。例如,数据点(0,1)和(1,1)可表示为量子态|01>和|11>,形成2量子比特的叠加态$\frac{1}{\sqrt{4}}(|00> + |01> + |10> + |11>)$,振