pytorch学习day1

一.pytorch主要模块介绍

1.1 模块介绍

模块 描述
torch 包含激活函数和主要的张量操作
torch.Tensor 定义了张量的数据类型,方法可返回新张量,方法后缀带下划线可修改张量本身
torch.cuda 定义了 CUDA 运算相关的函数,如检查 CUDA 是否可用,清除缓存,设置 GPU 计算流等
torch.nn 神经网络模块化的核心,包括卷积神经网络和全连接层,以及一系列损失函数
torch.nn.functional 定义神经网络相关的函数,卷积函数、池化函数、log_softmax 等激活函数,torch.nn 模块调用 torch.nn.functional 的函数
torch.nn.init 权重初始化模块,均匀初始化和正态分布初始化,带下划线表示修改张量本身并返回
torch.optim 定义一系列优化器,如 SGD、Adam,以及学习率调度器,实现学习率衰减方法
torch.autograd 自动微分算法模块,反向传播和求导函数,设置不求导部分
torch.distributed 分布式计算模块,设定并行运算环境
torch.distributions 强化学习等需要的策略梯度法,处理离散采样结果无法求导的问题
torch.hub 提供预训练模型给用户使用,可以获取模型的 checkpoint,加载对应模型
torch.random 保存和设置随机数生成器,设置随机数种子,初始化种子,设置和获取当前随机数生成器状态
torch.jit 动态图转静态图,保存后被其他前端支持,关联 torch.onnx 进行深度学习模型交换
torch.utils.benchmark 记录模型中各模块运行时间,优化模型性能
torch.utils.checkpoint 优化模型性能,以计算时间换空间,记录中间数据计算过程
torch.utils.data 主要包含 Dataset 和 DataLoader,用于数据加载和预处理
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值