TensorFlow 日常

本文探讨了在使用TensorFlow进行深度学习时遇到的数值溢出问题,特别是当损失函数中的预测概率接近零时,如何通过调整Logit的尺度来避免这一问题。文章建议使用sigmoid函数将Logit值域压缩至[0,1]区间,以此来有效防止数值溢出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TensorFlow 今日心得

数值溢出相关

损失函数 (交叉熵) 公式:

L o s s = − 1 n ∑ ( y ^ i l o g ( y i ) ) Loss = -\frac{1}{n}\sum (\hat y_ilog(y_i)) Loss=n1(y^ilog(yi))

即如果 y i y_i yi 过小, 接近于 0, 那么数值会溢出.

一般而言 y i y_i yi 是 tf.nn.softmax(logit) 的结果, 因此

Logit 的尺度差异不能过大

所以一般而言可以用 sigmoid 将 Logit 的值域压缩至 [0, 1] 区间可以有效避免数值溢出问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值