TensorFlow 今日心得
数值溢出相关
损失函数 (交叉熵) 公式:
L o s s = − 1 n ∑ ( y ^ i l o g ( y i ) ) Loss = -\frac{1}{n}\sum (\hat y_ilog(y_i)) Loss=−n1∑(y^ilog(yi))
即如果 y i y_i yi 过小, 接近于 0, 那么数值会溢出.
一般而言 y i y_i yi 是 tf.nn.softmax(logit) 的结果, 因此
Logit 的尺度差异不能过大
所以一般而言可以用 sigmoid 将 Logit 的值域压缩至 [0, 1] 区间可以有效避免数值溢出问题