谁限制了数据中心的资源使用效率:阿里巴巴数据集分析

本文基于阿里巴巴2018年的开源数据,分析了数据中心资源使用效率,发现内存成为新的瓶颈,限制了效率提升。离线任务作为低优先级任务,资源受限且频繁重调度。此外,Java应用的广泛使用增加了资源管理复杂性。阿里巴巴采用的混部集群架构结合了共享状态和两层调度,其中在线任务使用保守式分配,而离线任务采用乐观式分配,提供集群资源的分时复用和弹性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Who limits the resource efficiency of my datacenter: an analysis of Alibaba datacenter traces


这篇文章发在 IWQoS 2019,是包云岗老师团队的工作,对阿里巴巴 2018 年公布的第二版开源数据进行了详细的分析,主要聚焦在数据中心资源使用效率上。

阿里巴巴在 2018 年 12 月公布了其第二版开源数据,这版数据包含了4000+台机器的9天运行时数据,包括 4K 台机器、9K 个在线任务和 4M 个离线任务的静态和运行时数据。

需要注意的是,2017、2018 这两版数据,均是阿里巴巴内部私有云的集群数据,并不是阿里云的数据。

开源数据传送门:https://github.com/alibaba/clusterdata
论文传送门:https://dl.acm.org/citation.cfm?doid=3326285.3329074


本文从阿里巴巴调度框架中,在线任务和离线任务资源分配方式的不同切入,揭示了三个 insight:

  1. 在阿里巴巴的混部集群中&#
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值