寂静夜空35
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
14、训练深度学习模型的全面指南
本文提供了一份全面的深度学习模型训练指南,涵盖性能指标选择、数据采购与划分、误差率设定、基线模型建立、自动化端到端流程构建、可视化编排、过拟合和欠拟合分析以及超参数调优等内容,帮助读者系统性地掌握模型训练的关键步骤。原创 2025-06-22 04:08:06 · 44 阅读 · 0 评论 -
13、深度学习中的正则化技术
本文详细介绍了深度学习中的几种常见正则化技术,包括早停法、范数惩罚、Dropout等,并探讨了数据集增强、参数绑定与共享、噪声注入、学习曲线以及半监督学习与无监督预训练等方法的实际应用与优化策略。通过合理运用这些技术,可以有效防止模型过拟合,提高模型的泛化能力。原创 2025-06-21 15:29:07 · 37 阅读 · 0 评论 -
12、探索PyTorch:构建和训练深度学习模型
本文深入探讨了PyTorch的核心功能,包括其定义数学函数和计算梯度的能力,并通过具体实例展示了如何使用PyTorch构建和训练线性回归、循环神经网络(RNN)以及卷积神经网络(CNN)。文章还比较了动态图与静态图的特性,详细介绍了数据准备、模型训练及性能评估的过程,帮助读者更好地理解和应用PyTorch。原创 2025-06-20 09:59:53 · 19 阅读 · 0 评论 -
11、TensorFlow入门与实践
本文详细介绍了 TensorFlow 的核心概念和使用方法,包括计算图与会话、常量变量与占位符、张量操作、变量初始化、数据传递、梯度计算与优化等内容。同时深入探讨了两层神经网络和卷积神经网络的构建与训练,并展示了如何使用 TensorBoard 进行模型可视化和调试,帮助读者全面掌握 TensorFlow 的应用。原创 2025-06-19 10:04:25 · 15 阅读 · 0 评论 -
10、GPU加速深度学习模型训练
本文详细介绍了GPU在深度学习中的应用,包括基本概念、工作原理以及如何利用GPU加速模型训练。通过具体的编程示例和性能对比实验,展示了GPU计算的优势,并分享了优化技巧和最佳实践,帮助读者提升模型训练效率。原创 2025-06-18 16:00:56 · 19 阅读 · 0 评论 -
9、自动微分:深度学习中的关键使能技术
本文深入探讨了自动微分的基本原理、实现方法及其在深度学习中的应用,对比了数值微分和符号微分的优缺点,并通过逻辑回归、前馈神经网络等实例展示了自动微分的强大功能。同时,文章还介绍了如何通过优化技巧提升自动微分性能,以及其在图像分类和文本分类等实际项目中的应用,帮助读者全面理解并灵活运用这一关键技术。原创 2025-06-17 12:21:56 · 18 阅读 · 0 评论 -
8、深入理解随机梯度下降及其优化策略
本文深入探讨了随机梯度下降(SGD)的基本概念、优化问题及挑战,同时介绍了多种算法变体如动量、NAG、Adagrad、RMSProp和Adam等,并结合实验结果分析了不同优化器的表现。此外,还分享了使用SGD的技巧和分布式实现方法,为读者在深度学习领域的实践提供参考。原创 2025-06-16 11:37:03 · 13 阅读 · 0 评论 -
7、快速上手Keras:构建和训练深度学习模型
本文介绍了Keras的基本功能和高级特性,包括如何构建单层神经网络、卷积神经网络(CNN)、长短期记忆网络(LSTM),以及数据增强、回调函数、多GPU训练等高级功能。通过具体示例,展示了Keras在图像识别、序列数据分析等任务中的应用,并探讨了自定义损失函数和评估指标的实现方法。最后总结了Keras的优势及其在深度学习领域的广泛应用前景。原创 2025-06-15 15:20:45 · 14 阅读 · 0 评论 -
6、循环神经网络(RNN)的深入解析
本文深入解析了循环神经网络(RNN)及其变体LSTM的基本原理、计算过程、应用场景以及优化技巧。通过介绍RNN的结构和训练方法,探讨了其在时间序列预测、自然语言处理等领域的应用,并详细讲解了LSTM如何解决梯度消失和爆炸问题。同时,提供了LSTM的具体实现步骤和代码示例,帮助读者更好地理解和应用这些技术。原创 2025-06-14 11:37:31 · 24 阅读 · 0 评论 -
5、深入理解卷积神经网络(CNNs)
本文深入介绍了卷积神经网络(CNNs)的基本概念,包括卷积操作、池化操作及其变体,并详细解释了卷积-检测器-池化构建块的作用。同时通过MNIST手写数字分类的实例,展示了如何使用Keras构建和训练CNN模型。文章还探讨了CNN的工作直觉以及其在实际应用中的优势和特点。原创 2025-06-13 13:14:05 · 15 阅读 · 0 评论 -
4、探索Theano:深度学习的基石
本文深入介绍了Theano的基本概念、功能和实际操作,包括符号表达式、自动微分、共享变量等核心特性,并通过构建简单神经网络、卷积神经网络(CNN)和长短期记忆网络(LSTM)等实战案例展示了其在图像分类和自然语言处理领域的强大能力。原创 2025-06-12 15:25:35 · 18 阅读 · 0 评论 -
3、探索前馈神经网络:从基础到实战
本文从基础到实战详细介绍了前馈神经网络的核心概念,包括神经网络的基本单元、激活函数的作用、网络结构设计以及训练过程中的关键步骤。同时,通过使用AutoGrad库实现一个简单的神经网络实战案例,帮助读者深入理解神经网络的工作原理及其应用。原创 2025-06-11 15:18:58 · 18 阅读 · 0 评论 -
2、机器学习基础:构建智能模型的关键概念
本文深入探讨了机器学习的基础知识,包括学习的概念、二元分类与回归任务、泛化能力的重要性、正则化技术以及模型评估和优化策略。同时,通过一个实战案例展示了如何构建和优化一个简单的机器学习模型,帮助读者全面理解和掌握机器学习的核心概念和技术。原创 2025-06-10 09:20:03 · 21 阅读 · 0 评论 -
1、深度学习入门:从历史背景到现代应用
本文介绍了深度学习的历史背景、核心理念、相关领域的进展以及应用场景,详细讲解了深度学习的技术实现和实践案例分析,包括图像识别和自然语言处理等领域的具体应用。文章还提供了学习深度学习所需的先决条件,并展望了深度学习的未来发展方向。原创 2025-06-09 16:11:16 · 8 阅读 · 0 评论