迁移学习--深度迁移学习

该文研究深度网络中不同层的通用性与特异性,通过实验分析迁移学习的效果,发现早期层具有更强的通用性,适合迁移,而深层特征更特定于源任务。在相似和不同数据集间进行迁移,迁移初始化权重优于随机初始化,且微调能改善迁移性能。迁移效果受特征特异性和层间协同适应性影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章:How transferable are features in deep neural networks

代码部分:http://yosinski.com/transfer

这篇文章里的迁移我认为是transductive TL层面上的迁移(transductive TL具体可以看我这篇文章:迁移学习--综述)也就是domain不同,但是task相同。但是transductive TL里面还提到source和target的labeled data可不可得的问题,我感觉在这里都可得,又不那么严格满足transductive TL介绍里提到的情况,anyway分类可能也没有那么死板吧。


1. 背景与简介

这篇文章挺有意思的,我们知道在做深度网络的时候,一开始网络学的是general的特征,之后才越来越细化,越来越specific。那么到底怎么衡量一层是general和specific的呢?这种转变到底是突然在某一层发生的,还是慢慢渐变式地发生的呢?这种转变是在哪个部分发生的,开始、中间、还是最后一层?研究这些问题,是因为这些问题对研究迁移效果很有帮助,因为我们进行迁移,本质就是要找出source和domain里的共同点,所以要在general层面上进行迁移。因此,找出哪一层是general的,哪一层是specific的,也就显得至关重要了。

一般的迁移学习是这样的:训练好一个网络(我们称它为base network)→把它的前n层复制到target network的前n层→target network剩下的其他层随机初始化→开始训练target task。其中,在做backpropogate(反向传播)的时候,有两种方法可以选择:(1)把迁移过来的这前n层froze

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值