- 博客(15)
- 收藏
- 关注
原创 高斯列主元消去法——python实现
使用高斯列主元消去法求解线性方程组:param A: 增广矩阵(numpy数组):return: 解向量(numpy数组),或None(如果奇异)"""函数接受一个增广矩阵 ( A ),并通过高斯列主元消去法求解线性方程组。如果矩阵奇异(无唯一解),函数返回None。
2025-06-09 22:10:56
818
原创 A Self-Attentive model for Knowledge Tracing
模型的输入为学生过去的互动序列Xx1x2xt)),其中每个互动元素xtetrt))et表示学生在时间戳 (t) 尝试的练习,rt表示学生回答的正确性。为了将问题转化为序列建模问题,将输入序列处理为x1x2xt−1,对应的练习序列则为e2e3et,输出为对这些练习正确性的预测r2r3rt。
2025-05-26 12:17:46
1024
原创 Informative representations for forgetting-robust knowledge tracing
IFKT 模型包含三个主要组件:嵌入(Embedding)、知识状态(Knowledge State)和预测(Prediction)。其输入是学生的交互序列,输出是学生正确回答下一问题的概率。模型通过嵌入模块将问题、技能和交互信息转化为向量,知识状态模块模拟学生遗忘特性调整权重,预测模块给出回答正确的概率。
2025-05-20 19:09:53
574
原创 《融合图注意力的概念关联记忆网络知识追踪》
通过全连接层和 Tanh 激活函数生成高阶信息向量。按元素相乘,生成最终记忆向量。,包含主概念和错误频率。
2025-05-18 21:54:54
638
原创 《面向学习者个性化学习特征的知识追踪》
这些公式的核心思想是:动态建模认知结构:通过 GRU 更新学生对知识点之间关系的理解。模拟知识点间的相互作用:通过邻域聚合策略模拟知识点之间的相互影响。显式计算遗忘过程:通过遗忘曲线公式显式计算遗忘程度,并更新知识状态。预测学生答题概率:根据更新后的知识状态预测学生正确答题的概率。
2025-05-14 18:03:00
795
原创 线性回归(吴恩达课程作业——单变量城市人口和利润情况)
数学公式Jθ12m∑i1mhθxi−yi2Jθ2m1i1∑mhθxi−yi2代码实现代价函数用于衡量模型预测值和实际值之间的差异。Jθ12m∑i1mhθxi−yi2Jθ2m1i1∑mhθxi−yi2XXX:特征矩阵。yyy:目标变量向量。θ\thetaθ:模型参数。mmm:样本数量。
2025-04-28 21:34:18
561
原创 Ollama本地部署 DeepSeek【 Windows教程】
1.下载Ollama并安装运行DeepSeek2.使用Docker下载Maxkb并配置为 UI 界面说明:通过 Ollama 下载、安装和运行不同的大语言模型说明:windows系统需要使用Docker下载MaxKB操作系统:Win10/11CPU/内存:4C/8GB 以上磁盘空间:100GB。
2025-04-18 17:14:07
657
原创 LSA潜在语义分析(SVD)
矩阵 (A) 的元素 (A[i,j]) 表示词项 (i) 在文档 (j)中的出现次数。通过计算文档向量与查询向量的余弦相似度,系统可智能排序结果(如。更相关),即使文档未显式包含查询词项。
2025-04-14 14:46:47
467
原创 DyGKT、GIKT与GKT
动态性:DyGKT显式处理时序动态性,GIKT和GKT更侧重静态图关系。图结构:DyGKT为动态演化图,GIKT为问题-技能二分图,GKT为知识概念依赖图。技术焦点:DyGKT关注时间与结构动态,GIKT整合高阶关系,GKT强调图结构建模与解释性。
2025-04-09 22:10:13
802
原创 GPT-based Open-Ended Knowledge Tracing(OKT)
1.ht1KE((p1x1pmxt))]通过学生之前(离散)时间步的问题p和回答x来估计学生当前的知识状态ht1。pt和回答序列ht12.xt1∼RPht1pt1)]ht1。
2025-04-09 19:42:12
818
原创 《DyGKT: Dynamic Graph Learning for Knowledge Tracing》
目标:通过学生历史答题记录,预测未来答题表现。传统方法局限依赖固定长度序列,如DKT、AKT(如仅保留最近50条记录)时间间隔建模单一(如线性衰减或静态指数衰减)忽略时间间隔的语义差异(如短期密集学习 vs. 长期遗忘)忽略学生、问题、概念关系的动态性,难以建模重复答题的关联性动态图(Dynamic Graph) 是一种随时间变化的图结构,图中的节点(对象)和边(关系)会随着时间推移新、删除或修改属性。它能够捕捉现实世界中不断演化的关系网络。动态图如何帮助知识追踪?
2025-03-26 20:59:16
1076
原创 NeuralCDM论文公式语法与代码对应
这段代码通过定义一个神经网络类Net,实现了论文中的 NeuralCDM 模型。使用实现了学生因素 ( \mathbf{h}_s )。使用和实现了练习因素 ( \mathbf{h}{\text{diff}} ) 和 ( h使用kn_emb实现了知识相关性向量 ( \mathbf{Q}_e )。使用多层神经网络实现了交互函数,最终输出学生正确回答练习的概率 ( y )。通过这种方式,代码不仅实现了模型的高精度预测,还通过单调性假设确保了模型的可解释性。
2025-03-19 16:14:18
558
原创 《The Annotated Transformer》环境配置
配置《The Annotated Transformer》论文代码运行环境时老是报错,没有找到完整可行的环境配置方法,很多问题更是找不到解决方法,万幸最后终于配了出来,现在把它记录下来,一是防止遗忘,二是希望能够给像我一样的小白提供一些便利前提说明:本人非常小白,可能部分内容原理无法解释清楚,如有错误欢迎指正~
2024-11-23 21:01:20
1040
1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人