深度学习使用Pytorch训练模型步骤

训练模型是机器学习和深度学习中的核心过程,旨在通过大量数据学习模型参数,以便模型能够对新的、未见过的数据做出准确的预测。

训练模型通常包括以下几个步骤:

1.数据准备:
收集和处理数据,包括清洗、标准化和归一化。
将数据分为训练集、验证集和测试集。

2.定义模型:
选择模型架构,例如决策树、神经网络等。
初始化模型参数(权重和偏置)。

3.选择损失函数:
根据任务类型(如分类、回归)选择合适的损失函数。

4.选择优化器:
选择一个优化算法,如SGD、Adam等,来更新模型参数。

5.前向传播:
在每次迭代中,将输入数据通过模型传递,计算预测输出。

6.计算损失:
使用损失函数评估预测输出与真实标签之间的差异。

7.反向传播:
利用自动求导计算损失相对于模型参数的梯度。

8.参数更新:
根据计算出的梯度和优化器的策略更新模型参数。

9.迭代优化:
重复步骤5-8,直到模型在验证集上的性能不再提升或达到预定的迭代次数。

10.评估和测试:
使用测试集评估模型的最终性能,确保模型没有过拟合。

11.模型调优:
根据模型在测试集上的表现进行调参,如改变学习率、增加正则化等。

12.部署模型:
将训练好的模型部署到生产环境中,用于实际的预测任务。


一、PyTorch 数据处理与加载

PyTorch 提供了Dataset 和 DataLoader,帮助管理数据集、批量加载和数据增强等任务。

PyTorch 数据处理与加载:
自定义 Dataset:通过继承 torch.utils.data.Dataset 来加载自己的数据集。
DataLoader:使用DataLoader 按批次加载数据,支持多线程加载并进行数据打乱。(torch.utils.data.DataLoader

(一)自定义 Dataset

torch.utils.data.Dataset 是一个抽象类,允许你自己的数据源中创建数据集。

使用时需要继承该类并实现以下两个方法:
len(self):返回数据集中的样本数量。
getitem(self, idx):通过索引返回一个样本。

import os
import numpy as np
import pandas as pd
from torch.utils.data import Dataset
from models.utils import match_seq_len

DATASET_DIR = "D:\EMDKT\datasets\ASSIST2009"

class ASSIST2009(Dataset):
    def __init__(self, seq_len, dataset_dir=DATASET_DIR) -> None:
        super().__init__()
        self.dataset_dir = dataset_dir
        self.dataset_path = os.path.join(
            self.dataset_dir, "skill_builder_data.csv"
        )
        
        # 调用预处理
        self.q_seqs, self.r_seqs, self.q_list, self.u_list, self.q2idx, \
            self.u2idx = self.preprocess()

        self.num_u = self.u_list.shape[0]  # 用户总数
        self.num_q = self.q_list.shape[0]  # 题目总数

        if seq_len:
            self.q_seqs, self.r_seqs = match_seq_len(
                self.q_seqs, self.r_seqs, seq_len
            )

        self.len = len(self.q_seqs)

    def __getitem__(self, index):
        return self.q_seqs[index], self.r_seqs[index]

    def __len__(self):
        return self.len

    def preprocess(self):
        # 数据加载与清洗
        df = pd.read_csv(self.dataset_path, encoding="ISO-8859-15").dropna(
            subset=["skill_name"]
        ).drop_duplicates(
            subset=["order_id", "skill_name"]
        ).sort_values(by=["order_id"])

        u_list = np.unique(df["user_id"].values)
        q_list = np.unique(df["skill_name"].values)

        u2idx = {u: idx for idx, u in enumerate(u_list)}
        q2idx = {q: idx for idx, q in enumerate(q_list)}

        # 生成序列数据
        q_seqs = []
        r_seqs = []
        for u in u_list:
            df_u = df[df["user_id"] == u]
            q_seq = np.array([q2idx[q] for q in df_u["skill_name"]])
            r_seq = df_u["correct"].values
            q_seqs.append(q_seq)
            r_seqs.append(r_seq)

        # 返回结果
        return q_seqs, r_seqs, q_list, u_list, q2idx, u2idx

(二)使用 DataLoader 加载数据

DataLoader 是 PyTorch 提供的一个重要工具,用于从 Dataset 中按批次(batch)加载数据。
DataLoader 允许批量读取数据并进行多线程加载,从而提高训练效率。

from torch.utils.data import DataLoader, random_split
from models.utils import collate_fn

# 加载数据集
dataset = ASSIST2009(seq_len)  # seq_len 是序列长度参数

# 划分数据集
train_size = int(len(dataset) * train_ratio)  # train_ratio 是训练集比例
test_size = len(dataset) - train_size
train_dataset, test_dataset = random_split(
    dataset, [train_size, test_size]
)

# 创建数据加载器
train_loader = DataLoader(
    train_dataset,
    batch_size=batch_size,  # batch_size 是批处理大小
    shuffle=True,
    collate_fn=collate_fn  # 使用自定义的collate函数
)

test_loader = DataLoader(
    test_dataset,
    batch_size=test_size,  # 测试集使用整个测试集作为一个批次
    shuffle=True,
    collate_fn=collate_fn  # 使用自定义的collate函数
)

注释:
batch_size: 每次加载的样本数量。
shuffle: 是否对数据进行洗牌,通常训练时需要将数据打乱。

二、模型架构实现

通过继承 nn.Module 来定义模型

class DKT(Module):

    def __init__(self, num_q, emb_size, hidden_size):
        super().__init__()
        self.num_q = num_q
        self.emb_size = emb_size
        self.hidden_size = hidden_size

        self.interaction_emb = Embedding(self.num_q * 2, self.emb_size)
        self.lstm_layer = LSTM(
            self.emb_size, self.hidden_size, batch_first=True
        )
        self.out_layer = Linear(self.hidden_size, self.num_q)
        self.dropout_layer = Dropout()

    def forward(self, q, r):
        '''
        q: [batch_size, n]
        r: [batch_size, n]
        '''
        x = q + self.num_q * r

        h, _ = self.lstm_layer(self.interaction_emb(x))
        y = self.out_layer(h)
        y = self.dropout_layer(y)
        y = torch.sigmoid(y)

        return y

# 创建模型实例
model = DKT()

三、训练配置

(一)初始化模型与设备

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = DKT(
		dataset.num_q, 
		emb_size=100,
	    hidden_size=100
	).to(device)

(二)定义损失函数与优化器

损失函数用于衡量预测值与真实值之间的差异。PyTorch 中提供了现成的损失函数。
将使用 SGD(随机梯度下降) 或 Adam 优化器来最小化损失函数。

(1)损失函数

from torch.nn.functional import binary_cross_entropy
criterion = nn.binary_cross_entropy()

(2)优化器

from torch.optim import SGD, Adam
    if optimizer == "sgd":
        opt = SGD(model.parameters(), learning_rate, momentum=0.9)
    elif optimizer == "adam":
        opt = Adam(model.parameters(), learning_rate)

(三)训练模型评估模型

在训练过程中,将执行以下步骤:
使用输入数据 X 进行前向传播,得到预测值。
计算损失(预测值与实际值之间的差异)。
使用反向传播计算梯度。
更新模型参数(权重和偏置)。

# 训练模型
num_epochs = 1000  # 训练 1000 轮
for epoch in range(num_epochs):
    model.train()  # 设置模型为训练模式

    # 前向传播
    predictions = model(X)  # 模型输出预测值
    loss = criterion(predictions.squeeze(), Y)  # 计算损失

    # 反向传播
    optimizer.zero_grad()  # 清空之前的梯度
    loss.backward()  # 计算梯度
    optimizer.step()  # 更新模型参数

    # 打印损失
    if (epoch + 1) % 100 == 0:
        print(f'Epoch [{epoch + 1}/1000], Loss: {loss.item():.4f}')

注释:
optimizer.zero_grad():每次反向传播前需要清空之前的梯度。
loss.backward():计算梯度。
optimizer.step():更新权重和偏置。

(四)评估模型

训练完成后,可以通过查看模型的权重和偏置来评估模型的效果

with torch.no_grad():  # 评估时不需要计算梯度
    predictions = model(X)

(五)训练循环实现

import os
import numpy as np
import torch
from torch.nn.functional import one_hot, binary_cross_entropy
from sklearn import metrics

def train_dkt_model(model, train_loader, test_loader, num_epochs, optimizer, ckpt_path):
    """
    训练DKT模型的独立函数
    
    参数:
        model: 要训练的DKT模型实例
        train_loader: 训练数据加载器
        test_loader: 测试数据加载器
        num_epochs: 训练轮数
        optimizer: 优化器实例
        ckpt_path: 模型检查点保存路径
    """
    aucs = []       # 存储每轮测试AUC
    loss_means = [] # 存储每轮平均训练损失
    max_auc = 0     # 记录最佳AUC

    # 开始训练循环
    for epoch in range(1, num_epochs + 1):
        epoch_losses = []  # 存储当前epoch的训练损失
        
        # 训练阶段
        model.train()
        for data in train_loader:
            # 解包数据
            q, r, qshft, rshft, mask = data
            
            # 前向传播
            y_pred = model(q.long(), r.long())
            y_pred = (y_pred * one_hot(qshft.long(), model.num_q)).sum(-1)
            
            # 应用掩码选择有效预测
            valid_pred = torch.masked_select(y_pred, mask)
            valid_target = torch.masked_select(rshft, mask)
            
            # 计算损失
            loss = binary_cross_entropy(valid_pred, valid_target)
            
            # 反向传播
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            
            # 记录损失
            epoch_losses.append(loss.detach().cpu().item())
        
        # 计算本轮平均训练损失
        epoch_loss_mean = np.mean(epoch_losses)
        loss_means.append(epoch_loss_mean)
        
        # 验证阶段
        model.eval()
        all_preds = []
        all_targets = []
        
        with torch.no_grad():
            for data in test_loader:
                q, r, qshft, rshft, mask = data
                
                # 预测并选择有效结果
                y_pred = model(q.long(), r.long())
                y_pred = (y_pred * one_hot(qshft.long(), model.num_q)).sum(-1)
                
                valid_pred = torch.masked_select(y_pred, mask).cpu().numpy()
                valid_target = torch.masked_select(rshft, mask).cpu().numpy()
                
                all_preds.extend(valid_pred)
                all_targets.extend(valid_target)
        
        # 计算整体AUC
        auc = metrics.roc_auc_score(all_targets, all_preds)
        aucs.append(auc)
        
        # 打印训练信息
        print(f"Epoch: {epoch}, AUC: {auc:.4f}, Loss Mean: {epoch_loss_mean:.4f}")
        
        # 保存最佳模型
        if auc > max_auc:
            torch.save(model.state_dict(), os.path.join(ckpt_path, "model.ckpt"))
            max_auc = auc
            print(f"保存最佳模型,AUC = {auc:.4f}")
    
    return aucs, loss_means

理解 y = self(q.long(), r.long())

这行代码是知识追踪模型的核心,表示将输入数据传入模型进行前向传播。

1. 代码结构解析

y = self(q.long(), r.long())

self: 指当前模型实例(EM_DKT)

q.long(): 将问题ID序列转换为长整型(整数类型)

r.long(): 将响应序列(0/1)转换为长整型

y: 模型输出(预测概率)

2. 数据流分析

输入数据
变量 含义 维度 示例
q 问题ID序列 (batch_size, seq_len) [[101, 102, 0], [201, 0, 0]]
r 响应序列 (batch_size, seq_len) [[1, 0, 0], [0, 0, 0]]

3. 模型内部处理(在EM_DKT.forward()中)

步骤1: 交互编码
x = q + self.num_q * r

目的: 创建唯一的交互ID
逻辑:
-正确响应: ID = q + num_q * 1
-错误响应: ID = q + num_q * 0 = q

示例:
问题101正确: 101 + 100 * 1 = 201
问题101错误: 101 + 100 * 0= 101

步骤2: 嵌入层
emb = self.interaction_emb(x)

输入: 交互ID (batch_size, seq_len)
输出: 嵌入向量 (batch_size, seq_len, emb_size)
作用: 将离散ID映射为连续向量表示

步骤3: XLSTM处理
for t in range(seq_len):
    x_t = emb[:, t, :]  # 当前时间步
    h_t, states = self.xlstm(x_t, states)
    y_t = self.out_layer(h_t)

XLSTM结构:
-7层MLSTM: 处理长期知识状态
-1层ELSTM: 处理近期动态

状态传递: 每个时间步更新内部状态

输出: 每个时间步的隐藏表示 (hidden_size)

步骤4: 输出层
y = torch.stack(outputs, dim=1)
y = torch.sigmoid(y)

维度变化: (batch_size, seq_len, num_q)
sigmoid激活: 将输出转换为概率[0,1]

4. 输出

输出 y 的结构[batch_size,seq_len,num_q]
输出示例 y[0, 2, 101] = 0.85
表示:批次0中,第2个时间步后,学生答对问题101的概率是85%

5. 实际应用场景

训练时
# 预测下一个问题的正确概率
y_next = (y * one_hot(qshft)).sum(-1)
预测时
# 获取学生当前知识状态
current_state = self.xlstm.states

# 预测下一个问题
next_q = 105
next_input = create_input(next_q)
next_pred = self(next_input, current_state)

6. 数学表示

模型本质上学习了一个函数:

P ( r t + 1 = 1 ∣ q 1 : t , r 1 : t ) = f ( q 1 : t , r 1 : t ) P(r_{t+1}=1 | q_{1:t}, r_{1:t}) = f(q_{1:t}, r_{1:t}) P(rt+1=1∣q1:t,r1:t)=f(q1:t,r1:t)
其中:

q 1 : t q_{1:t} q1:t: 到时间t为止的问题序列

r 1 : t r_{1:t} r1:t: 到时间t为止的响应序列

f f f: 由EM_DKT模型参数化的复杂非线性函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值