爬虫(网络爬虫)是一种自动获取网页信息的程序,广泛应用于数据采集、信息监控等场景。以下从应用场景和开发要点两方面简要介绍:
一、爬虫的主要应用场景
• 数据采集与分析:如电商平台爬取商品价格、评论,用于市场调研;爬取新闻资讯、社交媒体内容,进行舆情分析。
• 搜索引擎构建:搜索引擎通过爬虫抓取全网页面,建立索引,为用户提供搜索服务。
• 信息监控:实时监控竞品动态(价格、活动)、行业政策变化、网站更新等。
• 学术研究:收集大量公开数据用于科研,如爬取论文文献、实验数据等。
二、爬虫开发的关键要点
1. 核心技术:
◦ 网络请求:使用requests(Python)、HttpClient(Java)等库发送HTTP/HTTPS请求。
◦ 页面解析:通过BeautifulSoup、XPath提取HTML数据;对动态加载内容(JavaScript渲染),需用Selenium、Playwright模拟浏览器行为。
◦ 数据存储:将爬取的数据保存到数据库(MySQL、MongoDB)、文件(CSV、JSON)等。
2. 合规性与反爬应对:
◦ 遵守网站robots.txt协议,尊重爬取频率限制,避免侵犯数据版权。
◦ 应对反爬措施:处理验证码、User-Agent伪装、IP代理池、Cookie管理等。
3. 框架选择:
◦ 入门:Python的Scrapy(高性能爬虫框架)。
◦ 分布式:Scrapy-Redis,适合大规模数据采集。
爬虫开发需平衡效率与合规性,根据目标网站的结构和反爬策略选择合适的技术方案。
下面爬某站音乐
import requests
from lxml import etree
import pandas
def get_html(url, time=30):
# 添加请求头模拟浏览器,避免被拦截
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.102 Safari/537.36'
}
try:
r = requests.get(url, headers=headers, timeout=time)
r.encoding = r.apparent_encoding
r.raise_for_status()
return r.text
except Exception as error:
print(error)
def parser(html):
doc = etree.HTML(html)
title = doc.xpath("//ul[@class='songlist__list']//a[@class='songlist__songname']/@title") # 歌曲名
href = doc.xpath("//ul[@class='songlist__list']//a[@class='songlist__songname']/@href") # 播放链接(相对路径需拼接域名)
# 处理相对链接,拼接完整URL
full_href = [f"https://y.xx.com{link}" for link in href]
out_dict = {"歌曲": title, "地址": full_href}
return out_dict
def save_dict2csv(item, path):
df = pandas.DataFrame(item)
df.to_csv(path, index=False, encoding='utf-8-sig')
if __name__ == "__main__":
url = "https://y.xx.com/n/ryqq/toplist?id=26"
html = get_html(url)
if html:
out_dict = parser(html)
save_dict2csv(out_dict, "tt_music.csv")
print("xx音乐数据爬取完成,已保存至tt_music.csv")
1269

被折叠的 条评论
为什么被折叠?



