数据科学(jieba)库的应用

jieba库总结

jieba是Python中常用的中文分词库,主要功能是将连续的中文文本分割成有意义的词语。

核心功能

    •    分词模式:

    ◦    精确模式:将文本精确切分,适合文本分析(默认模式)。

    ◦    全模式:找出所有可能的词语,速度快但存在冗余。

    ◦    搜索引擎模式:在精确模式基础上,对长词进一步拆分。

    •    自定义词典:支持添加自定义词语,优化专业领域(如美妆)的分词效果(如“粉底液”“玻尿酸”)。

    •    关键词提取:基于TF-IDF或TextRank算法,提取文本中的关键信息(如从美妆评论中提取“保湿”“持久”等词)。

美妆数据的数据分析方向

结合jieba库的文本处理能力,美妆数据分析可围绕以下维度展开:

1. 商品特征分析

    •    对商品名称、描述进行分词,提取高频词汇(如“保湿”“抗皱”“防晒”),总结热门功效或成分。

    •    结合销量数据,分析哪些功效的美妆产品更受欢迎(如夏季“防晒”类产品销量激增)。

2. 用户评论与情感分析

    •    用jieba对评论分词后,通过情感词典或模型判断用户态度(正面/负面),挖掘对产品的评价焦点(如“质地太油”“包装精美”)。

    •    提取高频差评关键词,定位产品改进方向(如“过敏”“脱妆快”)。

3. 品牌与市场趋势

    •    分析不同品牌的用户提及度、好评率,对比市场竞争力。

    •    结合时间维度(如电商大促期间),观察关键词变化,捕捉短期趋势(如“双十一”期间“折扣”“囤货”成热门词)。

4. 用户画像构建

    •    从用户评论、问答中提取年龄、肤质等信息(如“敏感肌”“学生党”),结合购买数据,分析不同群体的偏好(如年轻用户更关注“平价”“网红款”)。

通过jieba的分词能力处理非结构化文本数据,再结合结构化的销量、价格等数据,可全面挖掘美妆市场的规律和用户需求。

内容概要:该论文探讨了一种基于粒子群优化(PSO)的STAR-RIS辅助NOMA无线通信网络优化方法。STAR-RIS作为一种新型可重构智能表面,能同时反射和传输信号,与传统仅能反射的RIS不同。结合NOMA技术,STAR-RIS可以提升覆盖范围、用户容量和频谱效率。针对STAR-RIS元素众多导致获取完整信道状态信息(CSI)开销大的问题,作者提出一种在不依赖完整CSI的情况下,联合优化功率分配、基站波束成形以及STAR-RIS的传输和反射波束成形向量的方法,以最大化总可实现速率并确保每个用户的最低速率要求。仿真结果显示,该方案优于STAR-RIS辅助的OMA系统。 适合人群:具备一定无线通信理论基础、对智能反射面技术和非正交多址接入技术感兴趣的科研人员和工程师。 使用场景及目标:①适用于希望深入了解STAR-RIS与NOMA结合的研究者;②为解决无线通信中频谱资源紧张、提高系统性能提供新的思路和技术手段;③帮助理解PSO算法在无线通信优化问题中的应用。 其他说明:文中提供了详细的Python代码实现,涵盖系统参数设置、信道建模、速率计算、目标函数定义、约束条件设定、主优化函数设计及结果可视化等环节,便于读者理解和复现实验结果。此外,文章还对比了PSO与其他优化算法(如DDPG)的区别,强调了PSO在不需要显式CSI估计方面的优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值