数据进行数组分类

美妆数据每日销售分析代码总结

一、核心逻辑

代码围绕美妆销售数据,以时间维度(update_time )为核心线索,分别对每日销售量和销售额进行聚合、处理与可视化,借助 Python 的 datetime 处理时间格式,利用 matplotlib 绘制图表,清晰展现销售数据随时间的变化趋势,帮助分析者快速把握美妆产品在不同日期的销售表现。

代码:

 import datetime 
plt.figure(figsize = (12,12))
sale_day=data.groupby('update_time').sale_count.sum()
sale_day.index = [datetime.strptime(i, '%Y/%m/%d') for i in sale_day.index] ###将update_time转换为datetime数据否则plot函数无法识别排序
####每天的销量
plt.subplot(2,1,1)
plt.tick_params(labelsize = 15)
sale_day.plot()
plt.grid(linestyle = '-.')
plt.title('每日销售量',fontsize = 15)
plt.ylabel('销量', fontsize =10)
###每天的销售额
r_day=data.groupby('update_time')['销售额'].sum()
r_day.index = [datetime.strptime(i, '%Y/%m/%d') for i in r_day.index]
plt.subplot(2,1,2)
plt.tick_params(labelsize = 15)
r_day.plot()
plt.grid(linestyle = '-.')
plt.title('每日销售额',fontsize = 15)
plt.ylabel('销售额', fontsize =15)

plt.tight_layout()

二、关键步骤拆解

(一)时间格式处理

从 datetime 模块导入 datetime 类,为后续时间格式转换做准备。通过 data.groupby('update_time').sale_count.sum() 按日期对销售量聚合,再用列表推导式 [datetime.strptime(i, '%Y/%m/%d') for i in sale_day.index] ,将原本字符串类型的日期索引转换为 datetime 格式 。这一步至关重要,因为只有统一且规范的时间格式,才能让后续绘图时数据按时间有序展示,避免因字符串混乱导致的排序、可视化错误,确保分析基于准确的时间序列。

(二)可视化图表构建

    1.    画布与子图设置:调用 plt.figure(figsize = (12,12)) 创建画布,设定尺寸为 12x12 ,为容纳两张子图预留空间。接着用 plt.subplot(2,1,1) 和 plt.subplot(2,1,2) 划分出上下两个子图,分别用于展示每日销售量和销售额。这种布局让两类数据对比更直观,便于观察销售量与销售额趋势是否同步 。

    2.    销售量子图配置:在第一个子图中,plt.tick_params(labelsize = 15) 调整坐标轴刻度标签大小,让字体更清晰易读;sale_day.plot() 绘制销售量随时间变化的折线图;plt.grid(linestyle = '-.') 添加虚线网格,辅助查看数据点对应的大致数值;plt.title('每日销售量',fontsize = 15) 和 plt.ylabel('销量', fontsize =10) 分别设置标题与纵轴标签,明确图表含义 。

    3.    销售额子图配置:第二个子图流程与销售量子图类似,对按日期聚合的销售额数据(r_day )进行可视化。通过相同的刻度调整、绘图、网格添加操作,配合 plt.title('每日销售额',fontsize = 15) 和 plt.ylabel('销售额', fontsize =15) ,清晰呈现每日销售额趋势 。

    4.    布局优化:最后 plt.tight_layout() 自动优化子图间距,避免标题、标签等元素重叠,提升图表整体美观度与可读性 。

三、价值与应用场景

(一)业务分析层面

通过这两张趋势图,美妆电商运营者能快速发现销售高峰与低谷。比如,若某几天销售量和销售额突然攀升,可结合营销活动(如新品首发、限时折扣)、节假日(如情人节美妆需求上涨 )等分析原因,总结成功推广经验;若出现数据下滑,能排查是产品供应问题、流量引入不足还是用户需求转移,及时调整库存、推广策略 。对于美妆新品,也可观察其上线后每日销售数据变化,评估市场接受度,为后续推广节奏、产品迭代提供依据 。

(二)技术实践意义

从数据分析技术角度,代码展示了 “数据聚合 - 格式转换 - 可视化” 的完整流程。在美妆数据乃至更广泛的电商数据、消费数据处理中,这种思路可复用。比如分析服装、食品等品类的每日销售趋势,只需替换数据集中的品类相关字段,就能快速开展类似分析 。同时,代码也体现了 Python 数据分析库(datetime 处理时间、matplotlib 绘图 )的协同使用,为初学者提供了时间序列数据可视化的实操范例,助力掌握基础数据分析与可视化技能 ,后续可拓展加入更多分析维度(如结合不同美妆品类、用户地域分析销售趋势 ),深化数据挖掘。

### 使用分类数组进行数据分类 在MATLAB中,`categorical` 数据类型非常适合用来表示分组变量或标签。这种数据结构允许创建具有固定类别的数值型或字符型数据集[^2]。 #### 创建无序分类数组 对于简单的分类需求,可以先构建一个基本的分类数组: ```matlab % 定义原始字符串列表作为输入源 strs = ["apple", "banana", "cherry"; ... "apple", "orange", "banana"]; % 将上述字符串转换成分类数组 categoriesArray = categorical(strs); disp(categoriesArray); % 显示新建立好的分类对象 ``` #### 设置有序分类及其顺序 如果希望某些类别之间存在逻辑上的先后次序,则应设置为有序分类,并明确指定它们之间的相对位置关系: ```matlab % 设定水果甜度等级范围 sweetnessLevels = {'low', 'medium', 'high'}; orderedCategories = categorical({'low';'high';'medium'}, sweetnessLevels, 'Ordinal', true); % 展现调整过后的有序分类情况 disp(orderedCategories); ``` 通过这种方式定义之后,在后续计算过程中就可以利用 `min`, `max` 等函数来比较不同样本间的属性差异了。 #### 合并多个分类数组 当面对多批次采集到的数据时,可能需要把几个独立存在的分类数组组合起来形成更大的整体。这可以通过简单地垂直拼接实现: ```matlab classroomA = categorical({'red','blue'}); classroomB = categorical({'green','yellow'}); combinedGroups = [classroomA; classroomB]; disp(combinedGroups); ``` 此方法适用于保持原有类别不变的情况下增加新的观测值的情形[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值