机器学习核心概念

机器学习核心概念与实践场景总结

机器学习作为人工智能的核心领域,涵盖诸多关键概念与丰富实践场景,对其深入理解是掌握该领域的基础。

过拟合与欠拟合

在模型训练过程中,过拟合和欠拟合是常见问题。过拟合指模型过度学习训练数据的细节,包括其中的噪声和偶然因素,导致对新数据(测试数据)的预测效果极差。比如用复杂的深度神经网络去学习简单的水果识别任务,模型可能记住了某张苹果图片的背景噪音(如旁边的叶子形状),而非苹果本身的圆形、红色等关键特征,遇到新苹果图片时就会判断错误,表现为训练时准确率高,测试时骤降。欠拟合则是模型过于简单,无法捕捉训练数据的规律,对训练和新数据的预测效果都不好。例如用简单线性模型拟合受多因素影响、呈非线性关系的房价与面积数据,模型无法表达真实规律,误差大。好的模型需在两者间平衡,兼具学习与泛化能力。

无监督学习与聚类

无监督学习无需标签数据,聚类是其典型算法。目标是依据样本相似性(如距离、密度等)自动划分样本。像要把散点分成4类,可采用K - Means(K均值)算法,设置K=4后,算法迭代优化类中心,将样本分到距离最近的类。这一过程在机器学习领域有广泛应用,能帮助我们发现数据内在的分布结构。

集成学习

集成学习通过构建并结合多个学习器完成任务,核心思想是利用个体学习器差异发挥优势。个体学习器分同质(同种算法,如多个决策树组成的随机森林)和异质(不同算法组合)。集成方法有Bagging(装袋法,如随机森林,通过有放回抽样生成子集训练学习器,再投票或平均组合结果,增强泛化能力)、Boostin关注错分样本,按权重组合学习器)、Stacking(堆叠法,用初级学习器预测结果训练次级学习器组合输出)。集成学习在数据挖掘竞赛、金融风险评估、图像识别、自然语言处理等场景广泛应用,能综合多模型优势提升性能。

模型评估与选择

模型评估与选择是机器学习流程的关键环节。通过图表等方式,评估模型对数据的拟合、分类等能力,辅助选择合适模型。左侧回归模型拟合图表,可看模型对数据趋势的捕捉;右侧分类或聚类相关图表,能评估对不同类别数据的区分或分布呈现情况。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值