局部加权线性回归LWLR

本文探讨了线性回归中可能出现的欠拟合问题,并介绍了局部加权线性回归作为解决方案之一。文中详细解释了如何通过高斯核来确定权重矩阵,以及不同参数设置下模型的表现情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列阅读

线性回归的一个问题是有可能出现欠拟合现象

局部加权线性回归求回归系数 w 得公式如下:
Cinque Terre
其中 w 是一个矩阵,用来给每个数据点赋予权重。

最常用的w是高斯核
高斯核对应的权重如下
Cinque Terre

测试数据可以看到参数 k 与权重的关系

k = 1.0时(效果与最小二乘法差不多)
Cinque Terre

k = 0.01时(表现了数据的潜在规律)
Cinque Terre

k =  0.003时(过拟合)
Cinque Terre

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值