MATLAB中的polyfit函数的使用方法

本文详细介绍了MATLAB中polyfit函数用于多项式拟合的基本原理、语法以及示例,包括一次多项式拟合、polyval函数的配合使用以及处理非有序坐标点的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在MATLAB中polyfit函数是用来进行多项式拟合的。其数学原理是基于最小二乘法进行拟合的。具体使用语法是:

p = polyfit(x,y,n);
% 其中x,y表示需要拟合的坐标点,大小需要一样; n表示多项式拟合的次数。
% 返回值p表示多项式拟合的系数,系数从高到低排列

具体用法示例:

1、使用polyfit函数拟合一次多项式,示例:

%% polyfit函数的使用
clear; clc; close all;
% 原始数据
x = 1:20;
y = [1,12,23,46,78,98,100,123,160,210,230,270,292,350,346,386,438,349,460,512];

p = polyfit(x,y,1);  % 进行拟合
y1 = x*p(1)+p(2);  % 生成表达式,计算y的值

figure;  % 绘图
scatter(x,y,'.');
hold on;
plot(x,y1,'Color','r');
% 添加说明
xlabel('x');ylabel('y');title('自己构建表达式');
legend('原始数据','拟合直线');

多项式拟合批处理代码

结果示例:

在这里插入图片描述

2、在一般情况下使用polyfit函数的同时也会使用polyval函数,其中polyval函数是用来计算多项式的结果的。这样就不需要自己手动来计算多项式的结果了。其中polyval函数的使用方法如下:

p = polyfit(x,y,1);
y1 = polyval(p,x);
% 其中p就是使用polyfit函数拟合数据集x,y之后的结果,p是一个向量。
% 结果y1表示使用拟合多项式系数p来求出拟合结果y1。
具体示例:

clear; clc; close all;
% 原始数据
x = 1:20;
y = [1,12,23,46,78,98,100,123,160,210,230,270,292,350,346,386,438,349,460,512];

p = polyfit(x,y,1);  % 进行拟合
y1 = polyval(p,x);  % 生成表达式,计算y的值

figure;  % 绘图
scatter(x,y,'.');
hold on;
plot(x,y1,'Color','r');
% 添加说明
xlabel('x');ylabel('y');title('使用polyval函数');
legend('原始数据','拟合直线');

结果示例:

在这里插入图片描述

3、在一些特殊的情况下,当x的坐标值不是从小到大进行排列的时候,只要是x,y的坐标点一一对应的,都可以使用polyfit函数进行拟合处理,示例:

%% 当拟合的数据x的坐标不是排列好顺序的时候同样可以进行拟合
clear; clc; close all;
% 遇到的数据的x轴的坐标是乱序的,不是按照从大到小进行排序,每个点是一一对应的
x = [1,2,5,7,3,6,9,10,4,8,15,16,13,11,17,12,19,18,20];
y = [1,12,78,100,23,98,160,210,46,123,346,386,292,230,438,270,460,349,512];

% 当遇到x的点是乱序的时候,同样的可以使用polyfit函数直接进行拟合
p = polyfit(x,y,1);
y1 = polyval(p,x);

figure;  % 绘图
scatter(x,y,'.');
hold on;
plot(x,y1,'Color','r');
% 添加说明
xlabel('x');ylabel('y');title('x乱序');
legend('原始数据','拟合直线');

结果示例:

在这里插入图片描述

### MATLAB `polyfit` 函数详解 #### 多项式曲线拟合功能 `polyfit` 函数用于执行多项式曲线拟合操作,在给定的数据点基础上寻找最佳匹配的多项式表达形式[^1]。 #### 基本语法介绍 - **简单调用** - 表达式:`p = polyfit(x, y, n)` - 参数解释: - `x`: 数据点的横坐标,通常为列向量。 - `y`: 对应于`x`的数据点纵坐标,同样作为列向量提供。 - `n`: 所需拟合多项式的最高次数。 - 返回值:`p`是一个长度为`n+1`的数组,代表所求得的多项式系数,按降幂顺序排列[^2]。 - **附加统计信息** - 调用方式:`[p, S] = polyfit(x, y, n)` - 新增输出参数`S`包含了可用于后续计算预测区间的信息,比如协方差矩阵等,这有助于评估拟合质量并进行不确定性分析[^4]。 - **标准化处理选项** - 完整形式:`[p, S, mu] = polyfit(x, y, n)` - 此版本除了上述两个输出外还提供了`mu=[μ₁, μ₂]`,其中`μ₁=mean(x)`而`μ₂=std(x)`,即均值和标准偏差。这种变换使得输入变量被中心化且缩放至单位尺度,有利于提高数值稳定性特别是对于高次多项式的情况。 #### 实际应用案例展示 下面给出一段完整的MATLAB代码片段来演示如何利用`polyfit`完成一次简单的线性和二次回归: ```matlab % 创建模拟数据集 x = linspace(-5, 5, 50).'; % 构建均匀分布的自变量序列 noise = randn(size(x)); % 添加随机扰动成分 y_linear = 3 * x + noise; % 理论上呈直线关系的目标因变量加上噪音干扰后的观测值 y_quadratic = (x.^2)/8 + sin(pi/4*x) + noise;% 更复杂的非线性模式下的目标响应 % 应用polyfit分别做一阶(线性)与二阶(抛物线型)拟合 p_linear = polyfit(x, y_linear, 1); [p_quad, ~] = polyfit(x, y_quadratic, 2); % 计算对应理论曲线上的各点位置以便绘图比较 fitted_y_linear = polyval(p_linear, x); fitted_y_quadratic = polyval(p_quad, x); % 绘制图表直观呈现效果对比 figure; subplot(2, 1, 1), scatter(x, y_linear,'filled'), hold on, plot(x, fitted_y_linear, '-r', 'LineWidth', 2), title('Linear Fit Example'), legend({'Data Points','Fitted Line'}), grid minor; subplot(2, 1, 2), scatter(x, y_quadratic,'filled'), hold on, plot(x, fitted_y_quadratic, '--g', 'LineWidth', 2), title('Quadratic Fit Example'), legend({'Noisy Data','Fitted Curve'}), grid minor; ``` 通过这段脚本可以看到不同类型的趋势是如何被捕获并通过图形界面清晰展现出来的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值