王树尧老师运筹学课程笔记 10 线性规划与单纯形法(关于检测数与退化的讨论)

本文深入探讨了线性规划中的单纯形法,强调了单纯形表中B^{-1}

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第10讲 线性规划与单纯形法(关于检测数与退化的讨论)

对单纯形表中一些列的理解

在这里插入图片描述

主要注意的是,在如上图所示的单纯形表中,bbb列和填ai,ja_{i,j}ai,j的列中本质上填的应该是B−1bB^{-1}bB1bB−1AB^{-1}AB1A,只是在之前的情况下中BBB是单位矩阵。

对检测数的讨论

检验数的计算方法为σi=ci−cBB−1pi=ci−zi\sigma_{i}=c_{i}-c_{B} B^{-1} p_{i}=c_{i}-z_{i}σi=cicBB1pi=cizi。而对于其他教材可能将σi\sigma_{i}σi定义为σi\sigma_{i}σi=zi−ci=z_{i}-c_{i}=zici,但其本质上是一样的,只是判断σi\sigma_{i}σi符号和大小时恰好相反。同时如果要求解的最优化问题是对目标函数求minminmin,也只需要在判断σi\sigma_{i}σi时,用符号和大小相反的规则即可。简要来说取得最优解时对检验数的正负性要求如下表所示:

maxZmaxZmaxZminZminZminZ
ci−zic_{i}-z_{i}cizi≤0\le00≥0\ge00
zi−ciz_{i}-c_{i}zici≥0\ge00≤0\le00

如果在某轮迭代,有两个及以上相同的最大的检验数,则其给目标函数带来的收益相同,可以选择其对应的任意一个向量作为入基向量。

θ\thetaθ的讨论

如果在某轮迭代,有两个及以上相同的最小的θ\thetaθ,出现“退化”情况,大部分情况下可以选择其对应的任意一个向量作为出基向量,但是有些时候会出现循环运算。

当标准型中bi=0b_i=0bi=0时,可能出现“退化”情况。

解决方法: 在相同的最小的θ\thetaθ中,选择下标最小的决策变量作为出基变量,就不会出现循环运算。

总结

在单纯形表中,bbb列和填ai,ja_{i,j}ai,j的列中本质上填的应该是B−1bB^{-1}bB1bB−1AB^{-1}AB1A

对于不同检验数的定义和求minminminmaxmaxmax的不同,对检验数的判断法则也不同。

如果在某轮迭代,有两个及以上相同的最大的检验数,则其给目标函数带来的收益相同,可以选择其对应的任意一个向量作为入基向量。

如果在某轮迭代,有两个及以上相同的最小的θ\thetaθ,则选择下标最小的决策变量作为出基变量,就不会出现循环运算。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值