手写文字识别算法:原理、实现与优化
1. 引言
手写文字识别在现代科技中具有重要意义,它能将手写的文字转换为计算机可处理的文本。本文将详细介绍一种手写文字识别算法,包括其原理、具体实现步骤以及特征集的优化方法。
2. 手写文字识别基础
在手写文字识别中,图像的特征起着关键作用。不同的特征,如不同半径且旋转一定角度的线段、线段的交点等,在图像的特定点可能存在或不存在。对于特征 $k$,若其在图像的点 $(i, j)$ 存在,则 $y_k(ij) = 1$;若不存在,则 $y_k(ij) = 0$。
在手写文字识别中,我们使用具有特定长度和方向的直线段作为特征,总共使用了十个特征。为了提取这些特征,需要对手写符号的线条进行处理,先将线条细化到一个像素,再加粗到三个像素,使符号图像具有标准的线条厚度。特征的存在由符号中具有指定长度和方向的直线的存在来确定。
手写文字通过分辨率为 300 - 400 二进制点每英寸的扫描仪读取。手写文字识别算法的简要步骤如下:
1. 图像线条细化
2. 图像线条加粗
3. 提取信息特征
4. 特征编码
5. 将编码输入神经网络进行训练或识别
3. 线条处理算法
3.1 线条细化算法
线条细化算法通过以下公式实现:
[
\begin{align }
x_{ij} &= (x_{ij} \& (x_{ij - 1} \cup \neg x_{ij + 1})) \cup (x_{ij} \& x_{i - 1j - 1} \&