微机械制造中的神经网络应用与技术解析
1. 微机械制造新方法与低成本设备潜力
在微机械制造领域,提出了一些额外的制造方法,这些方法不仅能缩小微机械工具和微操作器的尺寸,还能降低异常误差。其独特之处在于,无需对设计进行更改,也无需采用特殊的超精密方法来达到所需的公差,就能够实现微设备的小型化。这种创新的方法为制造低成本且高效的微机械制造设备带来了可能,有望在微机械装置制造中发挥重要作用。
2. 神经网络视觉系统在微工件制造中的应用
计算机视觉系统在微机械制造中具有重要意义,它能提供反馈,提高制造过程的精度,可应用于低成本的微机械工具和微操作器,用于微设备的生产。有一种基于顺序生成的方法来创建微设备,每一代新的微设备都比上一代更小。这种方法允许使用低成本组件,进而创建能够生产低成本微设备的微工厂。
为了保持微设备的高精度,需要采用自适应的微件生产算法。基于接触传感器的算法已被证明效果良好,而基于神经网络的视觉系统则为改进制造过程提供了更广泛的可能性。
在日本,发起了一个基于微型微机械工具创建微工厂的特殊项目。机械工程实验室开发了一个桌面加工微工厂,它由车床、铣床、压力机等机床以及转移臂和两指手等组装机器组成,外部尺寸为 625 x 490 x 380 mm³。此外,瑞士也在研究未来微工厂的精密运动控制和微处理原则。在这些微工厂中,基于视觉系统的自动化是主要问题之一,并且有多种构建计算机视觉系统的方法。
为了研究基于神经网络的视觉系统,进行了离线模式的验证。制造了四组刀具位置不同的螺丝,用这些螺丝的图像来训练和测试开发的系统。螺丝图像的识别基于螺丝形状或轮廓的识别,检测螺丝轮廓并将其作为识别系统的输入。视觉系统基于具有置换