自适应评判设计与神经网络分类器的应用与发展
1. 自适应评判设计概述
自适应评判设计是一种在控制领域具有重要应用价值的方法。在该设计中,用户需要提供一个效用函数 U 和一个待控制环境的随机模型 F。通过动态规划的方法,可以求解出另一个函数 J,这个函数 J 作为一个次要或战略性的效用函数发挥作用。其关键定理在于,任何在短期内使 J 最大化的行动策略,也会使未来所有时刻的 U 之和最大化。
自适应评判设计更精确的定义是包含一个评判网络的设计,评判网络的输出是对 J 函数、其导数或与之密切相关内容的近似。这种方法有多种不同的实现方式,逐渐形成了一个自适应评判方法家族。
1.1 自适应评判设计的应用领域
自适应评判设计在多个领域都有广泛的应用,以下是一些具体的例子:
- 航空航天领域 :基于自适应评判的神经网络被用于设计飞机自动着陆的基准问题控制器,以及敏捷导弹的制导控制。
- 电力系统领域 :用于构建多机电力系统中涡轮发电机的神经控制器。
- 机器人领域 :为智能自主移动机器人构建新的学习方法(创造性学习)。
1.2 自适应评判设计的操作步骤
- 提供输入 :用户提供效用函数 U 和待控制环境的随机模型 F。
- 求解函数 J :使用动态规划方法求解函数 J。
- 构建评判网络 :设计评判网络,使其输出近似 J 函