脑电波与手写字符识别技术研究
1. 脑电波模式识别
在脑电波模式识别中,主要使用了多层感知器(MLP)和支持向量机(SVM)两种分类器对脑电图(EEG)数据进行任务分类,包括符号图像任务和文本图像任务。
1.1 MLP分类器
MLP分类器由神经网络结构定义,输入节点数量由独立特征数量决定。这里有4个特征:低阿尔法、高阿尔法、低贝塔和高贝塔,再加上其他控制变量(开始时间、结束时间、事件ID和事件持续时间),所以输入节点数为8。输出节点数对应2个类别答案:真(是)和假(否)。隐藏层节点数量根据Baum - Haussle规则确定,最多约80个节点。
在训练过程中,会改变学习率(从0.1 - 0.5)、动量(从0.5 - 0.9)和隐藏层节点数,以达到最高的准确率。训练时间为5000个周期,模型性能评估采用10折交叉验证。以下是MLP分类器在不同任务和参数下的识别准确率:
| ERPs任务 | 隐藏层 | 学习率/动量(0.1/0.5) | 学习率/动量(0.2/0.6) | 学习率/动量(0.3/0.7) | 学习率/动量(0.4/0.8) | 学习率/动量(0.5/0.9) |
| — | — | — | — | — | — | — |
| 符号图像任务 | 20 | 74% | 80% | 68% | 66% | 56% |
| | 40 | 72% | 77% | 74% | 65% | 58% |
| | 60 | 76% | 74% | 70% | 63% | 56% |
| | 80 | 69% | 72% | 72% | 61% | 53% |
| 文本图像任务 | 20 | 78% |