二叉树的深度优先遍历的非递归的通用做法是采用栈,广度优先遍历的非递归的通用做法是采用队列。
深度优先遍历:
对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次。对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次。
要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历、中序遍历、后序遍历。具体说明如下:
先序遍历:根、左、有
中序遍历:左、根、右
后序遍历:左、右、根
广度优先遍历:
又叫层次遍历,从上往下对每一层依次访问,在每一层中,从左往右(也可以从右往左)访问结点,访问完一层就进入下一层,直到没有结点可以访问为止。又叫层次遍历,从上往下对每一层依次访问,在每一层中,从左往右(也可以从右往左)访问结点,访问完一层就进入下一层,直到没有结点可以访问为止。
深度优先搜素算法:
不全部保留结点,占用空间少;有回溯操作(即有入栈、出栈操作),运行速度慢。
通常深度优先搜索法不全部保留结点,扩展完的结点从数据库中弹出删去,这样,一般在数据库中存储的结点数就是深度值,因此它占用空间较少。所以,当搜索树的结点较多,用其它方法易产生内存溢出时,深度优先搜索不失为一种有效的求解方法。
广度优先搜索算法:
保留全部结点,占用空间大; 无回溯操作(即无入栈、出栈操作),运行速度快。
广度优先搜索算法,一般需存储产生的所有结点,占用的存储空间要比深度优先搜索大得多,因此,程序设计中,必须考虑溢出和节省内存空间的问题。但广度优先搜索法一般无回溯操作,即入栈和出栈的操作,所以运行速度比深度优先搜索要快些。
94. 二叉树的中序遍历https://leetcode-cn.com/problems/binary-tree-inorder-traversal/ 145. 二叉树的后序遍历
https://leetcode-cn.com/problems/binary-tree-postorder-traversal/
二叉树的前中后序遍历
二叉树节点的定义
class TreeNode{
int val;
TreeNode left;
TreeNode right;
public TreeNode() {
}
public TreeNode(int val) {
this.val = val;
}
public TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
1、递归
前序
//递归实现
public List<Integer> preorderTraversal(TreeNode root){
//创建result 用来保存输出数据
List<Integer> result = new ArrayList<>();
preOrder(root,result);
return result;
}
// 定义递归用的前序遍历函数
public void preOrder(TreeNode root,List<Integer> result){
//如果为空说明遍历叶子节点了 直接返回
if(root==null){
return;
}
//根
result.add(root.val);
//左
preOrder(root.left,result);
//右
preOrder(root.right,result);
}
中序
//递归实现
public List<Integer> inorderTraversal(TreeNode root){
List<Integer> result = new ArrayList<>();
inOrder(root,result);
return result;
}
public void inOrder(TreeNode root,List<Integer> result){
if(root==null){
return;
}
//左
inOrder(root.left,result);
//根
result.add(root.val);
//右
inOrder(root.right,result);
}
后序
//递归实现
public List<Integer> postorderTraversal(TreeNode root){
List<Integer> result = new ArrayList<>();
postOrder(root,result);
return result;
}
public void postOrder(TreeNode root,List<Integer> result){
if(root==null){
return;
}
//左
postOrder(root.left,result);
//右
postOrder(root.right,result);
//根
result.add(root.val);
}
2、迭代
前序
显式的实现栈
//迭代
public List<Integer> preorderTraversal(TreeNode root){
List<Integer> res=new ArrayList<>();
if(root==null){
return res;
}
Deque<TreeNode> stack=new LinkedList<>();
TreeNode node=root;
while (!stack.isEmpty()||node!=null){
while (node!=null){
res.add(node.val);
stack.push(node);
node=node.left;
}
node=stack.pop();
node=node.right;
}
return res;
}
中序
分析一下为什么刚刚写的前序遍历的代码,不能和中序遍历通用呢,因为前序遍历的顺序是中左右,先访问的元素是中间节点,要处理的元素也是中间节点,所以刚刚才能写出相对简洁的代码,因为要访问的元素和要处理的元素顺序是一致的,都是中间节点。
那么再看看中序遍历,中序遍历是左中右,先访问的是二叉树顶部的节点,然后一层一层向下访问,直到到达树左面的最底部,再开始处理节点(也就是在把节点的数值放进result数组中),这就造成了处理顺序和访问顺序是不一致的
中序的迭代法较为复杂,因为
前序遍历中访问节点(遍历节点)和处理节点(将元素放进result数组中)可以同步处理,但是中序就无法做到同步!
//迭代 难理解
public List<Integer> inorderTraversal(TreeNode root){
List<Integer> result = new ArrayList<>();
if(root==null){
return result;
}
Stack<TreeNode> stack = new Stack<>();
TreeNode cur=root;
while (cur!=null||!stack.isEmpty()){
if(cur!=null){
//一直将左侧节点入栈
//直到cur==null
stack.push(cur);
cur=cur.left;
}else {
cur=stack.pop();
result.add(cur.val);
cur=cur.right;
}
}
return result;
}
后序
再来看后序遍历,先序遍历是中左右,后续遍历是左右中,那么我们只需要调整一下先序遍历的代码顺序,就变成中右左的遍历顺序,然后在反转result数组,输出的结果顺序就是左右中了,如下图:
//迭代
//先序遍历是中左右,后续遍历是左右中,那么我们只需要调整一下先序遍历的代码顺序,
// 就变成中右左的遍历顺序,然后在反转result数组,输出的结果顺序就是左右中了
// 中左右(前序遍历)--调整-->中右左---->翻转---->左右中
public List<Integer> postorderTraversal(TreeNode root){
List<Integer> result = new ArrayList<>();
if(root==null){
return result;
}
Deque<TreeNode> stack = new LinkedList<>();
stack.push(root);
while (!stack.isEmpty()){
TreeNode node = stack.pop();
result.add(node.val);
//左节点先进
if(node.left!=null){
stack.push(node.left);
}
//右节点后进
if(node.right!=null){
stack.push(node.right);
}
}
//翻转
Collections.reverse(result);
return result;
}
层次遍历使用队列
迭代法
//广度优先遍历应该使用队列进行模拟 迭代法
public List<List<Integer>> levelOrder(TreeNode root){
//定义返回值
List<List<Integer>> res = new ArrayList<List<Integer>>();
//如果为空 直接返回
if(root==null){
return res;
}
//队列构建
Queue<TreeNode> queue = new LinkedList<>();
//第一层 根节点入队
queue.offer(root);
while (!queue.isEmpty()){
//保存每一层结果
List<Integer> level = new ArrayList<>();
//保存该层节点个数
int size = queue.size();
//遍历该层节点
while (size>0){
//出队
TreeNode node = queue.poll();
//保存层级结果
level.add(node.val);
//追加左子节点
if(node.left!=null){
queue.offer(node.left);
}
//追加右子节点
if(node.right!=null){
queue.offer(node.right);
}
size--;
}
//追加本层结果到输出
res.add(level);
}
return res;
}
递归法