目标检测任务的指标

1.IoU:交并比:就是两个物体的交集/并集。

2.Precision:精度:代表框之间的吻合程度

3.Recall:召回率:代表所有物体中是否有些未检测到

注:p和r通常是一种折中的关系。

4.mAP:简单的来说可以说是Precision*Recall,图形上来讲是二者共同的面积。

5.TP FP FN概念:就是把摸个样本预测为正负样本这件事情是否正确。

6.IoU Loss:L=1-IoU:其实就是重合的部分是正确的,那剩下的没重合的就是损失误差,理所当然希望这个误差越小越好。但是有时候,框的大小不同和位置不同,但是这个值却一样,所以就有一些优化损失。

7.优化:GIoU loss、DIoU、CIoU等,如下图,实质上是考虑的因素变多了,包括重叠面积,中心点距离,框的长宽比。

8.Focal Loss:目标前景和背景往往不平衡,也就是背景多,负样本多,所以在训练时,调整二者所占比例,除此之外,前景中有的特征好检测,有的难检测,所以也分配不同的比重,这样训练就会更快,训练出来的模型也更好。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值