吴恩达MachineLearningYearning《MachineLearningYearning》学习笔记

文章探讨了监督学习中的主要算法,如线性回归、逻辑回归和神经网络,并指出数据量大小对选择模型的影响。在小数据集上,传统方法或小型神经网络更适用;大数据集则适合神经网络。此外,文章建议使用F1分数作为评估指标,以平衡精度和召回率,并主张先建立基础系统再进行优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果有需要pdf资源的可以私聊我~

学习笔记:

1.监督学习算法主要包括线性回归(linear regression)、对数几率回归(logistic regression,又译作逻辑回归、逻辑斯蒂回归)和神经网络(neural network)。虽然机器学习的形式有许多种,但当前具备实用价值的大部分机器学习算法都来自于监督学习。

2.发展快的原因:数据可用、计算规模变大(硬件发展)。

3.如果只有20个数据样本,使用传统机器学习方法比较好(或者使用很小的神经网络)。如果有100万个样本,使用神经网络更好。

4.使用单值评估指标往往比使用双值评估指标更好(精度和召回率也就是查准率和查全率有时候会一大一小从而无法比较),可以使用二者的平均值或者F1分数来计算。

5.比起构建完美的系统,先构建基础的系统然后再优化 更好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值