9件小事,外贸业务员坚持了必能成单!

外贸业务员必做的9件小事

有好多的事情在外贸人眼中会认为这些是小事,但是如果你连这些小事都不能坚持的话,那还谈什么成单呢?或许你从来没有坚持过,所以不相信。

但是我要告诉你的就是:外贸这些小事,坚持了必能成单!

01

在商务网站和B2B平台上发布商业信息虽然效果不是很好,但是也花不了多少时间。如果你更新的快的话,产品信息就会出现目录的首页,这个事情是需要长期坚持下去才能体现出效果的。

02

坚持给老客户或者潜在的客户发送公司的最新产品信息如果客户没有明确的拒绝你的产品信息邮件,就证明客户对你的这些邮件还是感兴趣的

所以你就要坚持给客户发送一些你认为客户会感兴趣的新产品资料,在开发新客户的时候一定不要忽视老客户的维持,毕竟老客户是你生存的基础。

03

浏览一下你所有的客户资料,寻找客户的节日如果在节日(或客户生日)的时候给客人发送卡片祝福,客人会觉得很亲切,与你的心理距离又迈进了一小步。

如果这个客户从来没有做过生意,他更会觉得你很有人情味,愉快的合作意向就会因此而产生。

04

浏览所有执行中合同的进度及跟进情况所有合同应该被科学地管理,使用正确的方法管理你的合同,就能快速查询到所有执行中的合同以及这些合同的执行进度。

坚持定时浏览这些合同情况,往往你就能发现隐藏的问题,比如交货期和条款欠缺,让你避免了一次重大损失。

05

坚持维护社交媒体平台,发帖、开发客户等。

以Facebook为例,发帖要注意发帖时间、发帖频率、内容如何编辑。企业需要有自己的公司公共主页来运营维护,提现企业的文化及产品内容,让客户加深品牌印象。当然也要做一些社媒的推广工作。

06

收发邮件尽可能快速地回复邮件,如果你不能解决客户在邮件中提出的问题,那就简单地回复说“邮件已经收到,我将尽快处理”,这会让客户知道你已经重视了他的问题,可以让客户安心等待你,而不会再去寻找更多的其他买家。

为了与客户同步,晚上加班是不可避免,这是解决时差最佳的办法,可以有效加快沟通的频率,抢占先机。

07

做好客户信息管理工作将所有收到的客户信息及时记录下来,并且做好客户要求的分类工作,特别是客户的询盘内容,以方便你的跟踪。

记住:客户的询盘就是客户订单的前奏,随着你的信息积累,你就会发现适合你的客户和产品。不要忽略小客户,任何客户都是从小做到大的。做外贸就一定要培养回头客,回头客的影响力可是非常大的哦。

08

浏览一些外贸商务网站主动到相关商务网站里寻找买家。在浏览网站时,要有针对性,善于使用搜索的功能。

同时记住,要对你认为有价值的信息进行记录,这些信息很可能会让你走向成功。

09

学习新的营销模式。在这个快速的时代,营销模式也在不停的更迭。像谷歌ADS和SEO就是不错的选择,谷歌独占搜索访问量的93%,是外贸朋友都想加入的一块儿宝地。

<think>嗯,用户要求详细解释Transformer和BERT的技术原理及发展历程,这需要系统梳理从Transformer到BERT的演进脉络。用户可能正在学习NLP前沿模型,或是准备相关面试,需要深度技术解析。 从引用材料看,用户提供的资料已涵盖关键点:Transformer的编码器-解码器结构、自注意力机制、位置编码;BERT的双向Transformer、Masked LM和NSP任务。但需要更结构化地呈现,并补充技术细节。 首先考虑用时间线梳理发展历程:2017年Transformer诞生解决RNN并行问题,2018年BERT创新性地用MLM实现双向预训练。这个脉络能帮助用户理解技术演进的逻辑。 技术原理部分需要分层解析: - Transformer部分重点讲清自注意力公式$ \text{Attention}(Q,K,V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V $的实际意义,以及多头机制如何增强特征提取 - 位置编码部分用$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{\text{model}}})$的实例说明如何保留序列信息 - 针对BERT要强调其仅用Transformer编码器,并通过[MASK]技巧解决双向训练难题 注意到用户示例中要求生成相关问题,这需要设计有梯度的思考题:从基础(如自注意力优势)到进阶(如BERT优化策略),最后延伸应用场景,帮助用户巩固知识体系。 特别要注意的是,所有数学公式必须严格按用户要求的格式:行内公式用$...$,独立公式用$$...$$。例如解释缩放点积注意力时,$\sqrt{d_k}$必须正确包裹,位置编码公式需单独成段显示。</think>以下是对Transformer和BERT的技术原理及发展历程的详细解析,结合关键技术创新点分层说明: --- ### **一、技术发展历程** 1. **2017年:Transformer诞生** - 由Google团队在论文《Attention is All You Need》中提出,**彻底取代RNN/LSTM**成为NLP主流架构 - 核心突破:**自注意力机制**实现并行化训练,解决RNN的长距离依赖问题 - 典型应用:机器翻译(编码器-解码器结构) 2. **2018年:BERT革命** - Google发布**BERT(Bidirectional Encoder Representations from Transformers)** - 创新点: - 首次实现**双向上下文建模**(传统语言模型仅单向) - 提出**Masked Language Model (MLM)** 预训练任务 - 刷新11项NLP任务记录(如GLUE基准提升7.6%)[^4] 3. **后续演进** - GPT系列(OpenAI):基于Transformer解码器的单向生成模型 - XLNet:引入排列语言模型解决BERT的预训练-微调差异 - RoBERTa:优化BERT训练策略(更大批次/更长序列) --- ### **二、Transformer核心技术原理** #### **1. 核心结构** ```mermaid graph LR A[输入序列] --> B(嵌入层) B --> C[位置编码] C --> D{编码器堆栈} D --> E[自注意力层] E --> F[前馈网络层] D --> G[输出表示] ``` - **位置编码公式**: $$ PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{2i/d_{\text{model}}}}\right) \quad PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{\text{model}}}}\right) $$ 其中$pos$为位置,$i$为维度索引,解决**序列顺序丢失**问题[^2] #### **2. 自注意力机制** - **计算过程**: $$ \text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V $$ - $Q$(查询)、$K$(键)、$V$(值)由同一输入线性变换得到 - **多头注意力**: 并行多个注意力头,捕获不同子空间特征(如语法/语义信息) #### **3. 编码器-解码器协作** - 编码器输出 → 解码器的K、V输入 - 解码器自注意力层采用**掩码机制**,防止当前位置关注后续词 --- ### **三、BERT核心技术突破** #### **1. 预训练任务创新** - **Masked LM (MLM)**: - 随机遮盖15%的输入词(其中80%替换为[MASK],10%随机替换,10%保留原词) - 目标:基于上下文预测被遮盖词,如: ``` 输入: "The [MASK] sat on the mat" 预测: "cat" ``` - **下一句预测(NSP)**: 判断两个句子是否连续(如`[CLS] + Sentence A + [SEP] + Sentence B`) #### **2. 模型架构特点** - **纯编码器结构**:仅使用Transformer的编码器堆栈 - **输入表征**: ``` [CLS] 我 喜欢 自然 语言 处理 [SEP] 这是 伟大 的 技术 [SEP] ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 分类符 Token嵌入 分割符 ``` - Token嵌入 + 位置嵌入 + 段落嵌入(Segment Embeddings) #### **3. 双向上下文优势** - 传统限制:GPT等模型仅能从左到右编码 - BERT突破:同时利用**左右两侧上下文** ```python # 示例:词义消歧 句子1: "银行[MASK]边有河流" → 预测"旁"(依赖右侧"河流") 句子2: "他去[MASK]行存钱" → 预测"银"(依赖左侧"存钱") ``` --- ### **四、关键影响与局限性** 1. **革命性贡献**: - 开启**预训练-微调范式**(Pretrain-Finetune) - 奠定大模型基础架构(如GPT-3、T5) 2. **主要局限**: - **预训练-微调差异**:MLM任务引入的[MASK]标记在微调时不存在 - **计算成本**:Base版需4-16块TPU训练数天 - **生成能力弱**:缺乏解码器,不适用于文本生成 --- ### **技术演进对比表** | 特性 | Transformer (2017) | BERT (2018) | GPT-3 (2020) | |--------------|--------------------|-----------------|-----------------| | **结构** | 编码器-解码器 | 纯编码器 | 纯解码器 | | **训练方式** | 监督学习 | 自监督预训练 | 自回归预训练 | | **上下文** | 双向(编码器) | 完全双向 | 单向(从左到右)| | **典型应用** | 机器翻译 | 文本分类/QA | 文本生成 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值