Spark SQL使用说明与DataFrame创建

本文介绍了如何在Spark 2.3.0中启动spark-shell并使用Spark SQL。通过示例展示了创建DataFrame的方法,包括从文件加载和使用case class。还详细解释了DataFrame的数据结构,包括列名、列类型和可为空性。最后,提供了一个更复杂的例子,展示DataFrame如何处理List、Array、Map和自定义类结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Spark SQL使用说明与DataFrame创建

版权声明:本文为博主原创文章,未经博主允许不得转载。

手动码字不易,请大家尊重劳动成果,谢谢

作者:http://blog.csdn.net/wang_wbq

启动spark-shell

由于spark-shell演示具有显而易见的有点,因此本文主要基于spark-shell对Spark SQL的使用进行介绍

我使用的是最新版本的Spark 2.3.0来进行演示

如需spark-shell运行环境可以参考 https://blog.csdn.net/wang_wbq/article/details/79659358

首先我们启动spark-shell,等待进入Scala REPL:

这里写图片描述

创建DataFrame

Spark SQL的所有操作都是基于其内部定义的一个叫做DataFrame(Spark2.0后它变成了DataSet[Row]的类型别名)的结构的,因此,我们首先需要创建DataFrame。

创建DataFrame的方式有很多种,比如json\csv\parquet等,在Spark 2.0以后,可以通过sparkSession.read得到DataFrameReader来读取各种支持类型的文件,从而得到对应的DataFrame。

不过我们既然使用了spark-shell,就更随意一点了。如果你现在就是为了处理一份数据,那么你可以直接用sparkSession.read里的方法来加载这份数据文件。如果你只是为了学习,或者研究某种数据结构的处理方式,那么你可以使用case class的方式来构造你的实验DataFrame:

case class DemoClass(arg0: Int, arg: String)

这里写图片描述

首先我们定义一个case class作为我们DataFrame的模版

之后我们造一些我们的测试数据:

scala> val test = (1 to 100).map(i => DemoClass(i, s"String_$i"))
test: scala.collection.immutable.IndexedSeq[DemoClass] = Vector(DemoClass(1,String_1), DemoClass(2,String
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值