Java集合之HashMap

本文详细剖析了JDK1.8中HashMap的数据结构、工作原理及关键方法。从数组+链表+红黑树的组成,到扩容、树化、哈希计算、元素添加、获取和删除的全过程,揭示了HashMap高效查询的秘密。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 简介

       在 JDK 1.8HashMap 是一种基于 数组 + 链表 + 红黑树 形成的数据结构,其特点是获取指定元素的时间复杂度可以视做O(1),而数组和链表获取指定元素的时间复杂度则为O(N)

2. 继承关系

在这里插入图片描述

       通过继承关系,我们可以看到 Map 接口与 Collection 接口并没有任何继承关系,两者算一种平级关系,很多人认为 HashMap 也属于集合便认为其是 Collection 接口的实现类。

3. 深入源码

3.1 属性

	/**
     * 默认初始容量,必须是 2 的整数次幂
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
     * 数组最大长度
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * 默认加载因子
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * 当一条链表节点大于等于 8 时树化。
     * 
     * 我理解的树化是链表转换为红黑树才算树化,此时树化的另一个需要满足的条件是数组长度大于等于64.
     * 一次面试中,面试官认为调用树化的方法便是树化,此时并没有 64 这个约束。
     */
    static final int TREEIFY_THRESHOLD = 8;

    /**
     * 当红黑树中节点的个数小于等于 6 时转为链表
     */
    static final int UNTREEIFY_THRESHOLD = 6;

    /**
     * 链表转红黑树时,数组长度需要大于等于 64
     */
    static final int MIN_TREEIFY_CAPACITY = 64;

    /**
     * 存储元素的数组,相当于桶,每个桶中并不仅仅只能存放一个元素,长度始终是 2 的整数次幂
     */
    transient Node<K,V>[] table;

    /**
     * 用于保存键值对
     */
    transient Set<Map.Entry<K,V>> entrySet;

    /**
     * 键值对个数
     */
    transient int size;

    /**
     * 当对map修改时,会更改该值。快速失败策略
     */
    transient int modCount;

    /**
     * 扩容阈值 (capacity * load factor).
     * 当键值对个数大于扩容阈值时,将进行扩容
     */
    int threshold;

    /**
     * 加载因子
     *
     */
    final float loadFactor;

3.2 内部类

3.2.1 Node

	// 用于表示链表节点的类
	static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

    }

3.2.2 TreeNode

	// 用于表示红黑树的节点的类
    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }
   }

在这里插入图片描述
        TreeNode 算是 Node 节点的子类,所以其可以使用父类的属性。

3.3 构造方法

3.3.1 HashMap()

    /**
     * 使用该构造方法时,在第一次添加元素时,其数组默认长度将为 16,加载因子为默认值0.75
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

3.3.2 HashMap(int initialCapacity)

	// 传入数组初始化容量,需要注意的是,并不代表 initialCapacity 的值就是数组长度的初始容量,且看下面分析
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

3.3.3 HashMap(int initialCapacity, float loadFactor)

	// 传入数组初始化容量和加载因子
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        // 阈值为给定的目标容量的第一个大于等于2的次幂的值
        this.threshold = tableSizeFor(initialCapacity);
    }

    /**
     * 对于给定的目标容量,返回两倍大小的幂
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

3.3.4 HashMap(Map<? extends K, ? extends V> m)

	// 将 Map 加入到当前Map中
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            if (table == null) { // pre-size
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }
            else if (s > threshold)
                resize();
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

3.4 哈希计算

    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

        在计算hash 值时,是其 hashCode 右移16位与原 hashCode 进行异或运算。
        为什么不直接取 hashCode 作为值呢?答案是,通常我们的hashCode 的高 16 位都是0,如果直接取 hashCode,那么高位通常不能参与运算,势必使hash 冲突的概率增加。

3.5 添加元素

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    /**
     *
     * @param hash hash(key)
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent 如果为true,则不要更改当前key的value
     * @param evict 如果为false,则表处于创建模式。
     * @return 返回当前 key 的上一个 value,没有则为 null 
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        
        // 如果数组为null或长度0,则初始化
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        
        // 如果数组中某一个位置还没有元素,那么直接在该位置放入元素
        // 如果计算某一位置?
        // 假设 hash 值对应的二进制为 01010101
        // 数组长度为16 , 其二进制为 00010000
		// 那么 n-1 之后的二进制则为  00001111
		// hash&(n-1)的最大值为 15,最小值为0
		// 所以这便是数组长度为什么始终是2的次幂,保证了不会越界   
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            // 如果桶中第一个元素和目标元素相同,则令 e 指向当前数组
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            // 如果桶中第一个元素是树节点,则以红黑树的方式添加元素     
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            // 如果桶中第一个元素是链表节点,则以链表的方式添加元素         
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                   		// 如果链表中没有目标 key,则添加到链表末尾
                        p.next = newNode(hash, key, value, null);
                        // 如果链表长度大于等于8,则调用树化方法
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    // 如果链表中存在指定元素,则令e指向当前元素
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            // 如果找到了对应key的元素
            if (e != null) { // existing mapping for key
                // 记录下旧值
                V oldValue = e.value;
                // 替换旧值为新值
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                // 在节点被访问后,做点什么事,hashMap中该方法并没有被实现    
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        // 如果键值对个数大于阈值,则扩容
        if (++size > threshold)
            resize();
        // 在节点被插入后,做点什么事,hashMap中该方法并没有被实现     
        afterNodeInsertion(evict);
        return null;
    }

(1)计算keyhash值;

(2)如果桶(数组)数量为0,则初始化桶;

(3)如果key所在的桶没有元素,则直接插入;

(4)如果key所在的桶中的第一个元素的key与待插入的key相同,说明找到了元素,转后续流程(9)处理;

(5)如果第一个元素是树节点,则调用树节点的putTreeVal()寻找元素或插入树节点;

(6)如果不是以上三种情况,则遍历桶对应的链表查找key是否存在于链表中;

(7)如果找到了对应key的元素,则转后续流程(9)处理;

(8)如果没找到对应key的元素,则在链表最后插入一个新节点并判断是否需要树化;

(9)如果找到了对应key的元素,则判断是否需要替换旧值,并直接返回旧值;

(10)如果插入了元素,则数量加1并判断是否需要扩容;

3.6 获得元素

3.6.1 get(Object key)

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        
         // 如果桶的数量大于0并且待查找的key所在的桶的第一个元素不为空
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            // 桶中第一个元素是要查找的值,则直接返回
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;    
            if ((e = first.next) != null) {
            	// 如果第一个元素是树节点,则以红黑树的方式查找
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                	// 如果第一个元素是链表,则遍历链表
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

(1)计算keyhash值;

(2)找到key所在的桶及其第一个元素;

(3)如果第一个元素的key等于待查找的key,直接返回;

(4)如果第一个元素是树节点就按树的方式来查找,否则按链表方式查找;

3.7 删除元素

3.7.1 remove(Object key)

    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }
    /**
     * Implements Map.remove and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to match if matchValue, else ignored
     * @param matchValue 如果为true,则仅在值相等时删除
     * @param movable 如果为false,则在删除时不要移动其他节点
     * @return the node, or null if none
     */
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
		// 如果数组不为空且对应的桶中存在元素
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            // 如果第一个元素是要找的值
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
            	// 如果第一个元素是树节点,则以树的方式查找
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                	// 如果是链表,则以链表的方式查找
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                // 以树的方式删除                 
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                // 如果第一个元素就是目标值,则放入链表中第二个元素    
                else if (node == p)
                    tab[index] = node.next;
                // 以链表方式删除    
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

(1)先查找元素所在的节点;

(2)如果找到的节点是树节点,则按树的移除节点处理;

(3)如果找到的节点是桶中的第一个节点,则把第二个节点移到第一的位置;

(4)否则按链表删除节点处理;

(5)修改size,调用移除节点后置处理等;

3.8 扩容

3.8.1 resize()

    final Node<K,V>[] resize() {
    	// 旧数组
        Node<K,V>[] oldTab = table;
        // 旧容量
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        // 旧扩容门槛
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
            	// 如果旧容量达到了最大容量,则不再进行扩容
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                 // 如果旧容量的两倍小于最大容量并且旧容量大于默认初始容量(16),则容量扩大为两部,阈值也变为2倍   
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
         	// 使用非默认构造方法创建的map,第一次插入元素会走到这里
        	// 如果旧容量为0且旧扩容门槛大于0,则把新容量赋值为旧门槛
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
        	// 调用默认构造方法创建的map,第一次插入元素会走到这里
       		// 如果旧容量旧扩容门槛都是0,说明还未初始化过,则初始化容量为默认容量,扩容门槛为默认容量*默认装载因子
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
        	// 如果新扩容门槛为0,则计算为容量*装载因子,但不能超过最大容量
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
         // 赋值扩容门槛为新门槛
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        // 新建一个新容量的数组
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        // 把原数组赋值为新数组
        table = newTab;
        if (oldTab != null) {
        	// 遍历旧数组
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                // 如果桶中存在元素
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    // 如果只有一个元素,则放入新的桶中
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    // 如果第一个元素是树节点,则将树分化为两个树,放入到链表中     
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                   		// 将原链表分化为两个链表
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            // (e.hash & oldCap) == 0的元素放在低位链表中
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                            	// (e.hash & oldCap) != 0的元素放在高位链表中
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        // 将低位链表放入新数组中和旧桶一样的位置
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        // 将高位链表放入新数组中和新桶一样的位置
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

(1)如果使用是默认构造方法,则第一次插入元素时初始化为默认值,容量为16,扩容门槛为12

(2)如果使用的是非默认构造方法,则第一次插入元素时初始化容量等于扩容门槛,扩容门槛在构造方法里等于传入容量向上最近的2n次方;

(3)如果旧容量大于0,则新容量等于旧容量的2倍,但不超过最大容量230次方,新扩容门槛为旧扩容门槛的2倍;

(4)创建一个新容量的桶;

(5)搬移元素,原链表分化成两个链表,低位链表存储在原来桶的位置,高位链表搬移到原来桶的位置加旧容量的位置;

3.9 树化

       如果插入元素后链表的长度大于等于8则判断是否需要树化。

    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        // 如果数组长度不足64,则扩容
        // 此时,原链表可能会分化为两个链表
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
  				// 把所有节点换成树节点
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                	// hd指向头结点
                    hd = p;
                else {
                	// 将单链表转化为双向链表
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
             // 如果进入过上面的循环,则从头节点开始树化
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }

4. 常见问题

  1. 为什么容量始终是2的幂次?

       1、因为计算key所在的桶是 (hash & n-1),如果n是2的幂次,则保证了key所在桶的范围是0 <= index <= n-1。

       2、在进行扩容时,原链表会分化为两条链表,高位的位置时 旧容量+从前的位置

  1. 加载因子为什么是0.75?

       假设loadfactory = 1,则键值对个数达到数组容量时,进行扩容,能够极大的利用空间,但是查询慢。

       假设loadfactory = 0.5,则键值对达到数组容量一半时,进行扩容,查询快,但是利用的空间较少。

       而0.75则是为了再空间与时间取一个平衡。

  1. 既然红黑树那么好,为啥hashmap不直接采用红黑树,而是当大于等于8个的时候才转换红黑树?

       根据泊松分布的概率学统计,当key所在的桶的链表长度增加,那么新的key到这个桶的概率在不断降低。

       当链表8长度为时,下一个键值对到这个链表的概率接近于0,所以产生红黑树的概率也不高

	 * 0:    0.60653066
     * 1:    0.30326533
     * 2:    0.07581633
     * 3:    0.01263606
     * 4:    0.00157952
     * 5:    0.00015795
     * 6:    0.00001316
     * 7:    0.00000094
     * 8:    0.00000006
     * more: less than 1 in ten million
  1. JDK1.7 扩容死锁产生原因
void resize(int newCapacity){
    Entry[] oldTable = table;
    int oldCapacity = oldTable.length;
    if(oldCapacity == MAXIMUM_CAPACITY){
        threshold = Integer.MAX_VALUE;
        return ;
    }
    
    Entry[] newTable = new Entry[newCapacity];
    transfer(newTable,initHashSeedAsNeeded(newCapacity));	
    table = newTable;
    threshold = (int)Math.min(newCapacity * loadFactory,MAXIMUM_CAPACITY + 1);
}

void transfer(Entry[] newTable,boolean rehash){
    int newCapacity = newTable.length;
    for(Entry<K,V> e:table){
        while (null != e){
            Entry<K,V> next = e.next;
            if(rehash){
				// ...
                e.next = newTable[i];
                newTable[i] = e;
                e = next;
            }
        }
    }
}

       使用两个指针来回翻转,多线程操作形成了环

  1. JDK1.8 为什么不会形成环,如何做到无需rehash

       通过两组指针,将原链表直接截断分为两组高低位链表,避免了向1.7那样节点间相互翻转,形成环,同时也不需要rehash

  1. HashMap为什么不选择其他树?

       AVL树和红黑树有几点比较和区别:
       (1)AVL树是更加严格的平衡,因此可以提供更快的查找速度,一般读取查找密集型任务,适用AVL树。
       (2)红黑树更适合于插入修改密集型任务。
       (3)通常,AVL树的旋转比红黑树的旋转更加难以平衡和调试。

       B树和B+树更多的是针对磁盘读取,针对磁盘读取而设计的树。

7.HashMapHashTable的区别

       线程安全性HashMap 是线程不安全的,而HashTable 是线程安全的,大部分方法都是由 synchronized修饰。


       效率HashMap由于不是线程安全的,所以就单线程环境下,效率高于 HashTable


        容量HashMap 默认初始容量为 16,而 HashTable 模式初始容量为 11。如果指定初始容量的话,HashMap 为第一个大于等于 2 的整数次幂的值,而 HashTable 则为指定值。

        扩容HashMap 每次扩容容量为原来的 2 倍,而HashTable2n + 1

        底层数据结构HashMap 1.7 后,采用数组+链表+红黑树的数据结构,而HashTable并没有采用红黑树的数据结构。

  1. HashMapHashSet 区别

       HashSet 底层就是基于HashMap 实现的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值