HashMap
1. 简介
在
JDK 1.8
中HashMap
是一种基于 数组 + 链表 + 红黑树 形成的数据结构,其特点是获取指定元素的时间复杂度可以视做O(1)
,而数组和链表获取指定元素的时间复杂度则为O(N)
。
2. 继承关系
通过继承关系,我们可以看到 Map
接口与 Collection
接口并没有任何继承关系,两者算一种平级关系,很多人认为 HashMap
也属于集合便认为其是 Collection
接口的实现类。
3. 深入源码
3.1 属性
/**
* 默认初始容量,必须是 2 的整数次幂
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
/**
* 数组最大长度
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* 默认加载因子
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* 当一条链表节点大于等于 8 时树化。
*
* 我理解的树化是链表转换为红黑树才算树化,此时树化的另一个需要满足的条件是数组长度大于等于64.
* 一次面试中,面试官认为调用树化的方法便是树化,此时并没有 64 这个约束。
*/
static final int TREEIFY_THRESHOLD = 8;
/**
* 当红黑树中节点的个数小于等于 6 时转为链表
*/
static final int UNTREEIFY_THRESHOLD = 6;
/**
* 链表转红黑树时,数组长度需要大于等于 64
*/
static final int MIN_TREEIFY_CAPACITY = 64;
/**
* 存储元素的数组,相当于桶,每个桶中并不仅仅只能存放一个元素,长度始终是 2 的整数次幂
*/
transient Node<K,V>[] table;
/**
* 用于保存键值对
*/
transient Set<Map.Entry<K,V>> entrySet;
/**
* 键值对个数
*/
transient int size;
/**
* 当对map修改时,会更改该值。快速失败策略
*/
transient int modCount;
/**
* 扩容阈值 (capacity * load factor).
* 当键值对个数大于扩容阈值时,将进行扩容
*/
int threshold;
/**
* 加载因子
*
*/
final float loadFactor;
3.2 内部类
3.2.1 Node
// 用于表示链表节点的类
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
}
3.2.2 TreeNode
// 用于表示红黑树的节点的类
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
}
TreeNode
算是 Node
节点的子类,所以其可以使用父类的属性。
3.3 构造方法
3.3.1 HashMap()
/**
* 使用该构造方法时,在第一次添加元素时,其数组默认长度将为 16,加载因子为默认值0.75
*/
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
3.3.2 HashMap(int initialCapacity)
// 传入数组初始化容量,需要注意的是,并不代表 initialCapacity 的值就是数组长度的初始容量,且看下面分析
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
3.3.3 HashMap(int initialCapacity, float loadFactor)
// 传入数组初始化容量和加载因子
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
// 阈值为给定的目标容量的第一个大于等于2的次幂的值
this.threshold = tableSizeFor(initialCapacity);
}
/**
* 对于给定的目标容量,返回两倍大小的幂
*/
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
3.3.4 HashMap(Map<? extends K, ? extends V> m)
// 将 Map 加入到当前Map中
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
if (s > 0) {
if (table == null) { // pre-size
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
if (t > threshold)
threshold = tableSizeFor(t);
}
else if (s > threshold)
resize();
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}
3.4 哈希计算
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
在计算hash
值时,是其 hashCode
右移16
位与原 hashCode
进行异或运算。
为什么不直接取 hashCode
作为值呢?答案是,通常我们的hashCode
的高 16
位都是0
,如果直接取 hashCode,
那么高位通常不能参与运算,势必使hash
冲突的概率增加。
3.5 添加元素
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
/**
*
* @param hash hash(key)
* @param key the key
* @param value the value to put
* @param onlyIfAbsent 如果为true,则不要更改当前key的value
* @param evict 如果为false,则表处于创建模式。
* @return 返回当前 key 的上一个 value,没有则为 null
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 如果数组为null或长度0,则初始化
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 如果数组中某一个位置还没有元素,那么直接在该位置放入元素
// 如果计算某一位置?
// 假设 hash 值对应的二进制为 01010101
// 数组长度为16 , 其二进制为 00010000
// 那么 n-1 之后的二进制则为 00001111
// hash&(n-1)的最大值为 15,最小值为0
// 所以这便是数组长度为什么始终是2的次幂,保证了不会越界
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
// 如果桶中第一个元素和目标元素相同,则令 e 指向当前数组
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 如果桶中第一个元素是树节点,则以红黑树的方式添加元素
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 如果桶中第一个元素是链表节点,则以链表的方式添加元素
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
// 如果链表中没有目标 key,则添加到链表末尾
p.next = newNode(hash, key, value, null);
// 如果链表长度大于等于8,则调用树化方法
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// 如果链表中存在指定元素,则令e指向当前元素
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 如果找到了对应key的元素
if (e != null) { // existing mapping for key
// 记录下旧值
V oldValue = e.value;
// 替换旧值为新值
if (!onlyIfAbsent || oldValue == null)
e.value = value;
// 在节点被访问后,做点什么事,hashMap中该方法并没有被实现
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// 如果键值对个数大于阈值,则扩容
if (++size > threshold)
resize();
// 在节点被插入后,做点什么事,hashMap中该方法并没有被实现
afterNodeInsertion(evict);
return null;
}
(1)计算key
的hash
值;
(2)如果桶(数组)数量为0
,则初始化桶;
(3)如果key
所在的桶没有元素,则直接插入;
(4)如果key
所在的桶中的第一个元素的key
与待插入的key
相同,说明找到了元素,转后续流程(9)处理;
(5)如果第一个元素是树节点,则调用树节点的putTreeVal()
寻找元素或插入树节点;
(6)如果不是以上三种情况,则遍历桶对应的链表查找key
是否存在于链表中;
(7)如果找到了对应key
的元素,则转后续流程(9)处理;
(8)如果没找到对应key
的元素,则在链表最后插入一个新节点并判断是否需要树化;
(9)如果找到了对应key
的元素,则判断是否需要替换旧值,并直接返回旧值;
(10)如果插入了元素,则数量加1
并判断是否需要扩容;
3.6 获得元素
3.6.1 get(Object key)
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
// 如果桶的数量大于0并且待查找的key所在的桶的第一个元素不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 桶中第一个元素是要查找的值,则直接返回
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
// 如果第一个元素是树节点,则以红黑树的方式查找
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
// 如果第一个元素是链表,则遍历链表
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
(1)计算key
的hash
值;
(2)找到key
所在的桶及其第一个元素;
(3)如果第一个元素的key
等于待查找的key
,直接返回;
(4)如果第一个元素是树节点就按树的方式来查找,否则按链表方式查找;
3.7 删除元素
3.7.1 remove(Object key)
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
/**
* Implements Map.remove and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to match if matchValue, else ignored
* @param matchValue 如果为true,则仅在值相等时删除
* @param movable 如果为false,则在删除时不要移动其他节点
* @return the node, or null if none
*/
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
// 如果数组不为空且对应的桶中存在元素
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
// 如果第一个元素是要找的值
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
// 如果第一个元素是树节点,则以树的方式查找
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
// 如果是链表,则以链表的方式查找
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
// 以树的方式删除
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
// 如果第一个元素就是目标值,则放入链表中第二个元素
else if (node == p)
tab[index] = node.next;
// 以链表方式删除
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
(1)先查找元素所在的节点;
(2)如果找到的节点是树节点,则按树的移除节点处理;
(3)如果找到的节点是桶中的第一个节点,则把第二个节点移到第一的位置;
(4)否则按链表删除节点处理;
(5)修改size
,调用移除节点后置处理等;
3.8 扩容
3.8.1 resize()
final Node<K,V>[] resize() {
// 旧数组
Node<K,V>[] oldTab = table;
// 旧容量
int oldCap = (oldTab == null) ? 0 : oldTab.length;
// 旧扩容门槛
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
// 如果旧容量达到了最大容量,则不再进行扩容
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
// 如果旧容量的两倍小于最大容量并且旧容量大于默认初始容量(16),则容量扩大为两部,阈值也变为2倍
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
// 使用非默认构造方法创建的map,第一次插入元素会走到这里
// 如果旧容量为0且旧扩容门槛大于0,则把新容量赋值为旧门槛
newCap = oldThr;
else { // zero initial threshold signifies using defaults
// 调用默认构造方法创建的map,第一次插入元素会走到这里
// 如果旧容量旧扩容门槛都是0,说明还未初始化过,则初始化容量为默认容量,扩容门槛为默认容量*默认装载因子
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
// 如果新扩容门槛为0,则计算为容量*装载因子,但不能超过最大容量
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
// 赋值扩容门槛为新门槛
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
// 新建一个新容量的数组
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
// 把原数组赋值为新数组
table = newTab;
if (oldTab != null) {
// 遍历旧数组
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
// 如果桶中存在元素
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
// 如果只有一个元素,则放入新的桶中
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
// 如果第一个元素是树节点,则将树分化为两个树,放入到链表中
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
// 将原链表分化为两个链表
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// (e.hash & oldCap) == 0的元素放在低位链表中
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
// (e.hash & oldCap) != 0的元素放在高位链表中
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 将低位链表放入新数组中和旧桶一样的位置
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 将高位链表放入新数组中和新桶一样的位置
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
(1)如果使用是默认构造方法,则第一次插入元素时初始化为默认值,容量为16
,扩容门槛为12
;
(2)如果使用的是非默认构造方法,则第一次插入元素时初始化容量等于扩容门槛,扩容门槛在构造方法里等于传入容量向上最近的2
的n
次方;
(3)如果旧容量大于0
,则新容量等于旧容量的2倍,但不超过最大容量2
的30
次方,新扩容门槛为旧扩容门槛的2
倍;
(4)创建一个新容量的桶;
(5)搬移元素,原链表分化成两个链表,低位链表存储在原来桶的位置,高位链表搬移到原来桶的位置加旧容量的位置;
3.9 树化
如果插入元素后链表的长度大于等于8
则判断是否需要树化。
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
// 如果数组长度不足64,则扩容
// 此时,原链表可能会分化为两个链表
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {
// 把所有节点换成树节点
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
// hd指向头结点
hd = p;
else {
// 将单链表转化为双向链表
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
// 如果进入过上面的循环,则从头节点开始树化
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
4. 常见问题
- 为什么容量始终是2的幂次?
1、因为计算key所在的桶是 (hash & n-1),如果n是2的幂次,则保证了key所在桶的范围是0 <= index <= n-1。
2、在进行扩容时,原链表会分化为两条链表,高位的位置时 旧容量+从前的位置
- 加载因子为什么是0.75?
假设loadfactory = 1,则键值对个数达到数组容量时,进行扩容,能够极大的利用空间,但是查询慢。
假设loadfactory = 0.5,则键值对达到数组容量一半时,进行扩容,查询快,但是利用的空间较少。
而0.75则是为了再空间与时间取一个平衡。
- 既然红黑树那么好,为啥hashmap不直接采用红黑树,而是当大于等于8个的时候才转换红黑树?
根据泊松分布的概率学统计,当key所在的桶的链表长度增加,那么新的key到这个桶的概率在不断降低。
当链表8长度为时,下一个键值对到这个链表的概率接近于0,所以产生红黑树的概率也不高。
* 0: 0.60653066
* 1: 0.30326533
* 2: 0.07581633
* 3: 0.01263606
* 4: 0.00157952
* 5: 0.00015795
* 6: 0.00001316
* 7: 0.00000094
* 8: 0.00000006
* more: less than 1 in ten million
JDK1.7
扩容死锁产生原因
void resize(int newCapacity){
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if(oldCapacity == MAXIMUM_CAPACITY){
threshold = Integer.MAX_VALUE;
return ;
}
Entry[] newTable = new Entry[newCapacity];
transfer(newTable,initHashSeedAsNeeded(newCapacity));
table = newTable;
threshold = (int)Math.min(newCapacity * loadFactory,MAXIMUM_CAPACITY + 1);
}
void transfer(Entry[] newTable,boolean rehash){
int newCapacity = newTable.length;
for(Entry<K,V> e:table){
while (null != e){
Entry<K,V> next = e.next;
if(rehash){
// ...
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}
}
使用两个指针来回翻转,多线程操作形成了环。
JDK1.8
为什么不会形成环,如何做到无需rehash
?
通过两组指针,将原链表直接截断分为两组高低位链表,避免了向
1.7
那样节点间相互翻转,形成环,同时也不需要rehash
。
HashMap
为什么不选择其他树?
AVL树和红黑树有几点比较和区别:
(1)AVL树是更加严格的平衡,因此可以提供更快的查找速度,一般读取查找密集型任务,适用AVL树。
(2)红黑树更适合于插入修改密集型任务。
(3)通常,AVL树的旋转比红黑树的旋转更加难以平衡和调试。
B树和B+树更多的是针对磁盘读取,针对磁盘读取而设计的树。
7.HashMap
和 HashTable
的区别
线程安全性:
HashMap
是线程不安全的,而HashTable
是线程安全的,大部分方法都是由synchronized
修饰。
效率:HashMap
由于不是线程安全的,所以就单线程环境下,效率高于HashTable
容量:HashMap
默认初始容量为16
,而HashTable
模式初始容量为11
。如果指定初始容量的话,HashMap
为第一个大于等于2
的整数次幂的值,而HashTable
则为指定值。
扩容:HashMap
每次扩容容量为原来的2
倍,而HashTable
为2n + 1
。
底层数据结构:HashMap 1.7
后,采用数组+链表+红黑树的数据结构,而HashTable
并没有采用红黑树的数据结构。
HashMap
和HashSet
区别
HashSet
底层就是基于HashMap
实现的。