凸优化第九章无约束优化 9.4最速下降方法

本文详细介绍了最速下降方法,包括Euclid范数下的负梯度方向,二次范数下的最速下降方向,并探讨了基于坐标变换的解释。通过坐标变换,最速下降法可以转化为梯度下降法,从而影响收敛速度。选择合适的范数对于优化过程的效率至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

9.4最速下降方法

对f(x+v)在x处进行一阶Taylor展开:

f(x+v)\approx \hat{f}(x+v)=f(x)+\bigtriangledown f(x)^Tv

其中\bigtriangledown f(x)^Tv是f在x处沿方向v的方向导数

\begin{Vmatrix}\cdot \end{Vmatrix}R^n上的任意番薯,顶一个规范化的最速下降方向:

\bigtriangleup x_{nsd}=argmin\left \{ \bigtriangledown f(x)^Tv|\begin{Vmatrix} v\end{Vmatrix} =1\right \}

一个规范化的最速下降方向\bigtriangleup x_{nsd}是一个能使f的线性近似下降最多的具有单位范数的步径。

也可以将规范化的最速下降方向乘以一个特殊的比例因子,从而考虑下述非规范化的最速下降方向

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值