自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

之之为知知

不讲虚的!职场老王的自习室,只给能落地的职场干货

  • 博客(43)
  • 收藏
  • 关注

原创 Win10安装dify

如果遇到docker无法启动,一般是wls未启动的问题。安装过程中注意一定要开启wls,等待安装完成,重启电脑即可。bcdedit 是否为auto,如果不是,设置为auto。注意,如果没有设置安装源,需要梯子,等待下载完成即可。安装没有报错,全部组件启动后,浏览器输入。进入dify的docker目录。配置初始化信息进入系统即可。

2025-06-26 23:16:02 301

原创 提示词优化:让大模型理解你的心意

提示词(Prompt)是用户输入给大模型的一段文字,用于引导模型生成期望的输出内容。它可以是一句话、一段描述、甚至是一个结构化的模板。在大模型的世界里,提示词就是你与AI沟通的语言。不同的提示词会导致模型产生截然不同的输出结果。例如:写点什么请用中文写一篇关于气候变化对农业影响的科普文章,要求通俗易懂,适合中学生阅读,字数控制在800字左右。显然,后者更有可能得到高质量的回答。

2025-06-25 17:19:52 977

原创 大模型微调:从零到实践,掌握AI大模型的核心技能

预训练(Pre-training)是指在大规模通用语料上训练模型的过程,通常需要巨大的计算资源和时间。微调(Fine-tuning)则是在预训练模型的基础上,使用特定领域的数据对模型进行进一步训练,使其适应具体任务。打个比方,预训练就像是给模型“上学”,让它掌握基本的语言理解和表达能力;而微调则是“专项培训”,让模型学会解决某个具体问题。大模型微调是连接理论与实践的重要桥梁。大模型微调的基本概念与优势;如何使用 Qwen 进行文本分类任务的微调;如何使用 LoRA 技术降低训练成本;

2025-06-25 17:13:53 1326

原创 文本分类与聚类:让信息“各归其位”的实用方法

想象一下你是一个图书管理员,面对成千上万本书,你需要把它们放到正确的位置。比如历史书放A区,小说放B区,科普读物放C区。这个过程就是典型的“分类”。文本分类也是类似的概念:它是根据已有的类别标准,把一段文字自动分配到一个或多个预设的类别中。新闻网站把每篇报道打上“体育”、“财经”、“科技”等标签;客服系统自动识别用户留言是否属于“投诉”、“咨询”、“建议”;邮件系统判断一封邮件是不是垃圾邮件。有时候,我们手里有一堆文本,但没有现成的分类标准,也不知道应该分成几类。这时候该怎么办呢?

2025-06-21 23:14:37 977

原创 为什么培训机构基本都不教强化学习?

在人工智能(AI)培训市场蓬勃发展的今天,各类机构纷纷推出“机器学习”、“深度学习”课程,甚至有些直接打出“AI工程师速成班”的招牌。。这并不是因为强化学习不重要,相反,它在机器人、自动驾驶、游戏AI等领域已经展现出巨大潜力和实际应用价值。本文将从多个角度深入分析这一现象,包括技术难度、市场需求、教学成本、就业导向等多个维度,帮助我们更全面地理解这一行业现状。

2025-06-19 11:30:43 1100

原创 强化学习:一种“边做边学”的智能方法

我们可以把强化学习想象成一种“边做边学”的过程。就像一个小孩在玩积木时,通过不断尝试不同的搭建方式,慢慢学会怎么搭得更高、更稳一样,强化学习系统也是通过反复试错来学习如何做出更好的决策。在这个过程中,系统会根据每一次行为的结果获得反馈——比如做得好就给奖励,做得不好就惩罚。久而久之,它就能总结出一套最有效的做法。这种方式不像传统的编程那样靠人写规则,而是让系统自己从经验中“悟”出来怎么做最好。

2025-06-19 11:27:01 349

原创 接到数据分析任务后,怎么判断是分类还是回归?什么时候你该考虑换模型?

你有没有遇到过这样的情况?这篇文章带你一步步搞清楚:我们将使用**公开数据集(Iris 和 Diabetes)**进行实战演示,并结合真实业务场景,让你不仅能“看懂”,还能“动手做”。在任何建模之前,最重要的一件事是:你想预测的到底是什么?我们来看两个常见公开数据集的例子:所以你可以问自己一句话:如果是类别标签 → 分类任务如果是连续数值 → 回归任务虽然都叫“机器学习模型”,但它们处理的任务完全不同。目标变量是离散的类别,如:常见算法:目标变量是连续值,如:常见算法:2. 初始模型选择:逻辑回归(

2025-06-13 00:16:23 1260

原创 机器学习怎么知道哪些数据“有用”?从统计到代码讲清楚

先来看个例子。比如你要预测一个人能不能考上大学。年龄性别家庭收入每天学习时间喜欢的颜色很明显,“喜欢的颜色”这个信息和考试成绩关系不大,应该被排除掉。而像“每天学习时间”、“家庭收入”这些可能更有参考价值。条件含义可预测性强和目标变量之间有明显的关系(如相关性、显著性)稳定性强在不同数据集上表现一致,不随训练集变化剧烈信息量大能提供独立于其他特征的新信息(低共线性)易于解释有助于理解模型输出,便于业务落地方法是否需要训练模型是否推荐特点卡方检验❌。

2025-06-12 23:57:46 793

原创 用小模型模仿大模型?这就是知识蒸馏的奥秘

想象一下你是刚学做饭的新手,而你身边有一位米其林三星大厨。他做一道菜,你看着、记着、照着做,慢慢你也学会了怎么做出口感接近的菜。知识蒸馏就是这么个过程。“老师模型”:通常是一个效果很好但很重的大模型(如 BERT、GPT)“学生模型”:通常是一个轻量但表现一般的小模型(如 TinyBERT、DistilBERT)我们让小模型去“模仿”大模型的输出,从而学到它的“思维方式”,而不是仅仅去记住训练数据里的答案。这样,最终得到的小模型就能在保持轻量的同时,获得接近大模型的效果。

2025-06-06 16:19:57 903

原创 AI Agent不是大模型,但它比大模型更懂“做事”

AI Agent就像一位聪明又贴心的助手,它不喧宾夺主,却总能在你需要的时候悄悄出现,让生活变得更轻松、更高效。它不仅仅是代码和算法,更是技术与人性结合的桥梁,与AI大模型相辅相成,共同构建起智能化生活的基石。

2025-06-04 18:25:08 1126

原创 大模型=大语言模型?别被名字忽悠了!

大模型是一个更广义的概念,包含了各种类型的大规模神经网络模型,而大语言模型只是其中一种。但无论是哪种大模型,它们都拥有强大的计算能力和学习能力,正在深刻地改变着我们的生活和工作方式。所以,与其纠结于概念的区别,不如动手实践,看看大模型能为你解决哪些实际问题。大模型就像一把瑞士军刀,功能强大,用途广泛;而大语言模型只是其中的一把小刀,虽然锋利,但只是众多功能之一。

2025-06-02 13:48:29 681

原创 Win10 doccano pip安装笔记

试了一下win10 doccano安装,遇到了一些问题,这儿记录一下。

2025-05-31 23:35:17 286

原创 大模型跑不动?试试“教小模型学大模型”

简单来说,知识蒸馏就是让一个小模型去学习一个大模型的经验,就像老师带学生一样。“老师”:是一个性能强、体积大的模型(比如 BERT、ResNet、LLaMA 等)“学生”:是一个结构更轻、运行更快的小模型(比如 TinyBERT、MobileNet、小型 Transformer)让学生学到老师的判断能力,但能跑得比老师更快、吃得比老师更少。听起来是不是很像你在工作中带新人?把经验传下去,但又不指望他一开始就能扛所有事。在这个AI快速发展的时代,我们不缺强大的模型,缺的是能把它们落地的能力。

2025-05-31 09:18:12 693

原创 Python随机森林算法:不是最牛的模型,但最适合“上手干”

简单来说,随机森林就是一个“由很多棵小树组成的树林”。每棵树都根据一部分数据做出自己的判断,最后大家投票决定最终结果。比如你想判断一个人会不会买某样产品,你可以让100棵树各自看看不同的数据片段,然后每棵树都说说自己的判断。最后多数人怎么说,就作为最终结论。听起来是不是有点像“开会讨论”?没错,这就是它的核心思想——多个弱模型联合起来,形成一个强模型。

2025-05-30 18:08:00 857

原创 为什么谁都能对项目经理“指点江山”?

项目管理的本质,是在复杂环境中搭建起一套高效协同的体系。项目经理就像“织网人”,把不同角色、不同阶段、不同需求串联起来,确保整个项目有条不紊地向前推进。所以,别再以为“谁都能当项目经理”,也别轻易对项目经理的工作指手画脚。真正懂项目管理的人,反而最懂得尊重这个职业的专业性和价值。而对那些正在从事项目管理工作的人来说,与其抱怨“外行指导内行”,不如不断提升自己的专业能力和影响力,用实力赢得尊重。毕竟,能把“看起来谁都能做”的事做到极致,才是真正的专业。

2025-05-29 19:58:54 700

原创 现在都在调用大模型,还有必要学人工智能吗?——从就业角度看AI学习的价值

大模型的普及,让 AI 技术变得更普惠、更容易获得。但这并不意味着我们可以放弃对底层知识的学习。相反,正因为工具有力,我们才更需要理解它们的工作方式、适用边界以及潜在问题。学会用 AI 工具,让你能参与竞争;学会 AI 本身,才能赢得竞争。无论你是应届生、转行者还是资深程序员,在这个 AI 快速发展的时代,系统地学习人工智能,依然是提升职场竞争力、实现职业跃迁的重要途径。别让“调接口”成为你的终点,而应该只是你通往更高处的起点。

2025-05-29 18:36:22 793

原创 Python 如何查看源码:不只是看代码,更是理解底层逻辑的钥匙

现代 IDE 都支持一键跳转到函数定义处,从而查看源码。Python 查看源码的方式多种多样,从inspect到 IDE 跳转再到 GitHub 阅读,关键是要养成“遇到不懂就看源码”的习惯。

2025-05-28 12:08:48 1206

原创 Python 生成器:不是所有能遍历的对象都是生成器

生成器是一种特殊的函数,它通过 yield 返回值,并能在多次调用之间保持状态。生成器函数:包含yield的函数;生成器表达式:类似列表推导式,但使用()而非[]。# 生成器函数yield 1yield 2yield 3# 生成器表达式📌 这两个才是真正的“生成器对象”。生成器函数必须包含yield,且调用后返回的是一个生成器对象。在 Python 标准库中,真正用生成器实现的函数不多,但功能强大,如os.walk()和。

2025-05-28 12:00:31 590

原创 Python 迭代器:不是循环本身,而是让循环更优雅的工具

迭代器是一个对象,它可以记住遍历的位置,并能一步步返回下一个元素。你可以把它想象成一个“翻页器”:每次调用.next()或next(),它就会给你下一页内容;如果没有更多内容了,它就会抛出一个异常。Python 允许我们通过定义类的方式,创建自己的迭代器。只需满足两个条件:实现__iter__()方法;实现__next__()方法。迭代器不是一个循环,而是一种“按需提供数据”的机制。它让我们的程序更高效、更灵活,尤其适合处理大数据、流式数据或无限序列。

2025-05-28 11:19:09 582

原创 大模型参数:不是越大越好,而是要“合适”

你可以把一个机器学习模型想象成一个经验丰富的裁判员。它在训练过程中不断调整自己的“判罚标准”,最终形成一套能做出准确判断的规则——这套规则就是模型参数。举个例子: 如果你训练一个模型来判断一封邮件是不是垃圾邮件,它会学到一些规则,比如:“出现‘中奖’这个词,可能是垃圾邮件”“发件人不在联系人列表里,可能性更高”这些“规则”的具体数值(比如某个词的权重有多大)就是模型的参数。使用目标推荐参数规模原因快速上线、节省成本小模型(几万~百万级)轻便、部署快、维护简单高性能、高精度。

2025-05-27 17:12:15 785

原创 深度学习能取代机器学习吗?

使用目的推荐技术原因处理结构化数据机器学习简单、高效、可解释数据量小机器学习不容易过拟合实时性要求高机器学习模型轻、推理快图像、语音、文本任务深度学习自动提取高维特征数据丰富、任务复杂深度学习更强的表达能力和泛化能力需要可解释性机器学习易于分析和解释深度学习很强大,但它不是唯一的解法。选择哪种技术,取决于你的数据、任务目标和资源条件。就像锤子和螺丝刀,各有各的用处。别想着“我有个锤子,天下都是钉子”,而是要想着:“我遇到的是不是钉子?是不是该用锤子?📌推荐阅读资源。

2025-05-27 14:38:45 1248 1

原创 从零开始理解机器学习:知识体系 + 核心术语详解

你可以把机器学习想象成一个擅长总结经验的助手。你给它一堆例子(比如很多张猫的照片),它就能慢慢学会“什么样的图像是猫”。然后即使你给它一张新照片,它也能判断是不是猫。一句话总结:机器学习是一种根据已有数据自动找出规律,并用于新数据预测的方法。机器学习虽然听起来很技术,但它本质上是在解决这样一个问题:给我一堆数据,我能不能从中找出规律,并用这个规律去预测未来的事情?每一个术语的背后,其实都是围绕这个目标设计的方法或工具。掌握这些术语,不仅有助于你读懂论文和技术文档,还能帮助你更好地使用和调试机器学习模型。

2025-05-27 14:31:58 1156

原创 机器学习知识体系:从“找规律”到“做决策”的全过程解析

你可以把机器学习想象成一个擅长总结经验的助手。你给它一堆例子(比如很多张猫的照片),它就能慢慢学会“什么样的图像是猫”。然后即使你给它一张新照片,它也能判断是不是猫。一句话总结:机器学习是一种根据已有数据自动找出规律,并用于新数据预测的方法。机器学习并不是什么高科技魔法,也不是让机器拥有了“智能”。通过大量数据自动找出隐藏的规律,并用来解决问题。只要你掌握了这个核心理念,再配合一定的数学、编程和工程能力,就可以开始用机器学习解决现实问题了。📌推荐阅读资源书籍:《机器学习》周志华(西瓜书)

2025-05-27 14:22:12 1040

原创 深度学习:不只是“模仿大脑”的黑科技

深度学习并不是“机器有了思想”,也不一定比人聪明,但它确实具备强大的模式识别能力。只要你提供足够的数据,它就能从中找到规律,并用来解决问题。它就像一个勤奋的助手,虽然一开始什么都不懂,但只要教得对、练得多,它就能逐渐掌握复杂的任务。📌推荐阅读资源(简洁易懂版):书籍:《动手学深度学习》(李沐)——代码+理论结合,适合入门《深度学习(花书)》——适合进阶,数学推导较详细平台:Kaggle(练习比赛)Google Colab(免费 GPU 计算资源)HuggingFace(预训练模型平台)

2025-05-27 14:17:58 649

原创 深度学习常用概念详解:从生活理解到技术原理

深度学习听起来很“高科技”,但其实它背后的很多思想并不难理解。就像我们人类通过不断学习来认识世界一样,深度学习模型也是通过大量数据和算法来“学会”识别图像、语音、文字等内容。这篇文章将从出发,再逐步深入,帮助你真正理解深度学习中的关键概念。

2025-05-27 14:10:47 1346

原创 python多线程二:多线程也有自己的问题

根据客流量选择模式中小客流量:多线程(多个服务员)大客流量:异步 IO(智能传菜系统)超大量计算需求:多进程(开设分店)优化资源使用控制服务员数量(线程池),避免资源浪费;减少服务员间共享工具(减少锁竞争)。处理突发事件设置超时机制(避免顾客等待过久);使用守护线程处理后台任务(如清洁)。

2025-05-27 10:36:07 359

原创 python多线程一:多线程创建与死锁

多线程是指在一个程序中同时运行多个执行线程,每个线程独立执行不同的任务,从而实现 “并行” 处理的效果。在 Python 中,多线程特别适合处理(如网络请求、文件读写、数据库操作等),因为线程切换可以在等待 I/O 操作时释放 CPU 资源,提升整体效率。

2025-05-27 09:37:11 639

原创 pytorch简单线性回归模型

3、定义损失函数和优化器。

2025-05-26 17:22:49 657

原创 Python同步异步问题三:一个小错误而可能造成无法营业

上一篇我们解决了职责不明的问题。本文解决:有一道菜错误而整个套餐都无法上菜的问题。

2025-05-26 12:02:30 156

原创 Python同步异步问题二:职责不明、都想按自己的来

上一篇我们解决了多劳多得互不相让而造成的死锁问题。本文解决:新招聘了一个热菜厨师,结果两个厨师都想按自己的来。

2025-05-26 11:41:41 243

原创 Python同步异步问题一:多劳多得互不相让

由于餐厅生意好,你给你的餐厅制定如下规则造成了如下问题:1. 谁做得菜越多,谁就能得到更高的奖金,多劳多得。2. 你新招聘了一个热菜厨师,结果两个厨师为同一个菜争着加盐。3. 你没有对配菜进行管理,肉菜臭了厨师还是照做,导致整个套餐都上不了了。你会怎么做?先看问题一。

2025-05-26 11:09:58 405

原创 Python中的同步异步,你已经开餐厅了,你会这么运转吗

想着你的餐厅生意很好,订单暴增,因此你开设了VIP订单和普通订单。你为了更多的利润,你允许VIP订单先做。print("VIP订单开始处理")print("VIP订单完成")print("普通订单开始处理")print("普通订单完成")task_normal = loop.create_task(normal_order()) # 创建普通任务task_vip = loop.create_task(vip_order()) # 创建 VIP 任务。

2025-05-26 09:34:30 379

原创 python中的同步异步,你是选择单兵作战还是团队协作。

特点同步编程异步编程执行方式按顺序执行并发执行不阻塞资源占用简单高效(无调度开销)需要事件循环管理使用场景逻辑简单、顺序明确I/O 密集型任务、高并发场景编写难度简单直观需理解协程、Event Loop等异步很像项目管理中关键路径,当需要时间最长的任务完成时,所有任务才能完成。因此很多时间我们在可以选择的情况下,根据项目实际情况选择“单兵作战”或“团队协作”。因为在管理中,一开始人月神话一般是有用的。

2025-05-26 08:47:48 410

原创 数学笔记三:特殊矩阵

2. 示例3. 性质。

2025-05-26 00:42:26 404

原创 数学笔记二:矩阵加法、乘法

即A-B不等于B-A,但A-B=A+(-B)=(-B)+A。对应位置的元素相加,结果构成新矩阵。”,但不满足交换律和结合律。注意:减法可以看着“

2025-05-25 23:35:57 149

原创 数学笔记一:标量、向量和矩阵基本概念辨析

是一种仅用数值大小(即 “量值”)就能完全描述的物理量或数学对象,它不具有方向属性。例如在实数领域的正数、负数。在物理学领域的多少斤、多少公斤、水温多少度、气温多少度都是标量。因此标量的无方向并非无意义的,它实际上侧重于强调数量上的多少。

2025-05-25 23:08:35 952

原创 250524软考高项很难,问了一下AI,给了如下答复

要求考生运用所学知识提出兼具逻辑严谨性与创新性的解决方案,考察考生在实际工作中解决复杂问题的能力。案例分析题设置多重约束条件下的复杂场景。《数据安全法》《个人信息保护法》

2025-05-24 23:15:22 607

原创 软考准考证打印流程

PS:如果没有连接打印机的小伙伴或者暂时不方便打印的小伙伴,可以先保存为PDF后再打印。2025上半年的软考将在本周末举行,还没有打印准考证的小伙伴可以打印准考证了。各位小伙伴一定要注意自己的考试批次和考试时间。二、找到页面下方的的准考证打印。三、选择你的考试城市。

2025-05-19 22:56:37 112

原创 我眼中的取经路:一个和尚的管理修行自述

如果你也在带团队,或者正在学习如何与人协作,我想告诉你:好的管理者,不是最强的那个人,而是能让每个人都发挥出最好的状态;好的控制者,不是最严厉的那个人,而是能在关键时刻拉一把、扶一下的人。管理是“心”,控制是“线”;心要热,线要稳。愿你也能在这条路上,走得坚定而不失温度,顺便还能笑一笑,毕竟生活已经够苦了,别把自己整得太严肃。**

2025-05-18 23:21:50 859

原创 悟空的三次失败,三次“向上管理”进化

这才是真正的“向上管理”。真正的自由,不是没人管你,而是你能影响那些管你的人。

2025-05-17 07:34:06 993

软考-八大绩效域-目标及作用

软考-八大绩效域-目标及作用

2025-05-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除