
openpose
文章平均质量分 77
openpose的框架个人理解
优惠券已抵扣
余额抵扣
还需支付
¥99.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
aworkholic
路漫漫其修远兮,吾将上下而求索
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
openpose标定中棋盘格检测错误的解决方案
整个流程上,个人理解实际仅在内参标定且棋盘格内角点尺寸宽高相同时,不存在大于90°旋转时有效,算是弥补opencv棋盘格检测不稳定的优化。例如实际使用棋盘格内角点尺寸为7x6,下图画面中棋盘格起点为右下角角点,终点为左上角,但openpose的结果最终会有出现右上角为起点、左下角为终点的错误结果。通常指定尺寸的两个纬度的值不能相同,例如当指定内角定尺寸为8x8时,如果棋盘格在画面中出现旋转,那么棋盘格的起点位置会出现变化,从而导致结果错误。对本文最早的采集数据,重新执行标定程序,结果正常,如下图。原创 2024-06-08 23:21:27 · 675 阅读 · 0 评论 -
基于openpose的引体向上的识别计数统计项目(4)CPoseExtract类设计与实现
CPoseExtract设计为一个纯虚类,规定了基本的调用接口函数,便于后续扩展使用。本文实现使用OpenPose的人体骨骼关键点提取 继承类COpenPoseExtract 来说明。比较简单,直接 给出完整代码。原创 2024-03-11 15:34:39 · 151 阅读 · 2 评论 -
基于openpose的引体向上的识别计数统计项目(5)CPoseClassify类设计与实现
和CPoseExtract一样, CPoseClassify设计为一个纯虚类,规定了基本的调用接口函数,便于后续扩展使用。该类主要用于判断一帧骨骼关键点数据属于引体向上动作中的状态类型。我们后期可以设计使用手动判定规则,也可以使用如SVM的分类器,还可以使用深度学习中的LSTM等方式实现。本文实现使用OpenPose的人体骨骼关键点进行手动设计CPoseClsOpenPoseManual类。比较简单,直接 给出完整代码。原创 2024-03-15 21:15:00 · 197 阅读 · 0 评论 -
基于openpose的引体向上的识别计数统计项目(2)CPullupCounter类设计与实现
在前文介绍了整体项目结构。本文详细说明CPullupCounter类的设计与实现。原创 2024-02-29 21:15:00 · 227 阅读 · 0 评论 -
基于openpose的引体向上的识别计数统计项目(1)背景和项目介绍
引体向上作为中考体育考试中的选考科目,使用视频人工智能分析的方式,取代繁琐的人工记录具有意义,并且能够在日常的训练中起到分析、总结、建议的作用。等视频结束后,能够从PullupResult中获取测试者的有效计数,测试时间,有效测试的开始、结束帧序号(两者差值除以fps就得到测试时间),关键帧画面等。是外部调用的应用层类,初始化之后,传递连续的图像帧,内部将实时提取骨骼关键点、判断动作状态、时序判断、统计等,最后获取最终统计结果,如时间、关键画面等。, 即算一次有效动作,允许在同一个动作下出现多个状态,如。原创 2024-02-26 14:41:21 · 320 阅读 · 0 评论 -
openpose 人体关键点姿态估计检测简化代码
一次,并且由于openpose内部使用cpu、gpu端的数据拷贝,系列成员函数必须运行在用一个线程中。注意inference前调用。原创 2023-06-16 23:30:00 · 422 阅读 · 0 评论 -
openpose 官方相机标定流程(3)补充说明
0、多路先同时拍摄进行外参标定的说明前面4个相机同时拍摄进行外参标定,再做一些额外的说明进行外参标定时,需要指定参数cam0 和 cam1。以标定 1,0 两个相机为例,命令行简写:Calibration.exe --mode 2 --grid_square_size_mm 120.0 --grid_number_inner_corners 7x6 --omit_distortion --calibration_image_dir D:外参\extrinsic_calibration -原创 2021-12-24 22:33:05 · 842 阅读 · 0 评论 -
openpose 自定义实现简化的标定流程
在实际使用时,如果标定结果的参数文件使用在openpose时,上述函数的若干个参数是固定的。我们再封装如下try {return {true , {} };// 不能再抛异常 //printf("%s", e.what());return {} }这里flag设置为,直接影响opencv执行内参标定的的畸变参数结果,为8个参数(k1,k2,k3,k4,k5,k6径向畸变,p1,p2切向畸变)。默认保存标定过程中畸变矫正后的结果,设置。为保持形式一致,再封装如下。原创 2021-02-28 16:29:01 · 189 阅读 · 0 评论 -
openpose 官方相机标定流程(2)
在 openpose 官方相机标定流程(1)的后续,给出参数的说明的流程。1、内参(1)准备棋盘图像(2)标定相机ipc1标定命令行Calibration.exe-mode 1-grid_square_size_mm 120.0 // 棋盘方格的边长(mm)-grid_number_inner_corners 7x6 // 棋盘格内角点网格数-camera_serial_number ipc1 // 相机标记字符串-calibrat原创 2021-02-28 16:25:05 · 575 阅读 · 2 评论 -
openpose 官方相机标定流程(1)
相机标定主要分为内参标定、外参标定。一、标定各个相机内参对各相机进行内参标定,建议拍摄时注意一下两点1、棋盘默认左上角为世界坐标系原点,不要旋转棋盘超过~15-30度。2、拍摄分布在不同距离,每个距离覆盖所有图像视角(所有的边界,中心等)1、内参标定内参标定使用 Calibration.exe 程序,这里直接给出相机ipc1和相机ipc2的标定命令行Calibration.exe -mode 1 -grid_square_size_mm 120.0 //原创 2021-02-28 16:24:33 · 1123 阅读 · 13 评论 -
opencv 多目(含双目)视觉三维点重构,内参、外参标定详解
opencv 多目(双目)视觉三维点重构,包含理论部分和代码实现测试两个部分。理论部分,包括相机内参标定推导(图像的外参、畸变系数推导),相机之间的外参推导流程。 代码实现部分,相机标定主要以opencv现有函数实现,主要以相机间外参的求解,以及多相机视角下三维点重构的实际测试结果。原创 2020-11-23 13:20:10 · 2411 阅读 · 2 评论