在传感器数据处理、姿态估计(如横滚角、俯仰角)或运动控制等领域,“AxesRaw” 和 “Axes” 是常见的术语,通常用于描述传感器数据的坐标轴信息。以下是它们的含义和区别:
🔹 一、AxesRaw(原始轴数据)
✅ 含义:
- AxesRaw 表示原始的、未经处理的传感器数据,通常指的是加速度计、陀螺仪、磁力计等传感器在三个坐标轴(X、Y、Z)上的原始输出值。
- 这些数据是未经校准、未滤波、未转换的原始数值,可能包含噪声、漂移或偏差。
✅ 示例:
假设你有一个加速度计,它的输出可能是:
AxesRaw = [x, y, z]
,单位为 mg(毫重力单位)或 m/s²。- 陀螺仪的输出可能是:
AxesRaw = [gx, gy, gz]
,单位为 °/s 或 rad/s。
✅ 特点:
- 原始数据,可能包含误差。
- 需要经过校准、滤波、坐标变换等处理后才能用于姿态计算。
🔹 二、Axes(处理后的轴数据)
✅ 含义:
- Axes 表示经过处理后的坐标轴数据,可能是经过校准、滤波、归一化、坐标系转换后的结果。
- 它更接近实际物理意义,比如单位统一、去除偏移、消除噪声等。
✅ 示例:
- 经过校准后的加速度计数据可能是:
Axes = [x', y', z']
,单位为 m/s²,已经去除了偏移量。
- 经过卡尔曼滤波处理后的姿态角数据可能是:
Axes = [roll, pitch, yaw]
,单位为 度(°) 或 弧度(rad)。
✅ 特点:
- 更稳定、更准确,适合用于姿态估计、控制、显示等。
- 通常用于后续的算法处理(如卡尔曼滤波、姿态解算等)。
🔹 三、两者的关系
项目 | AxesRaw | Axes |
---|---|---|
数据来源 | 传感器原始输出 | 经过处理后的数据 |
是否包含误差 | 是 | 否(或较少) |
是否适合直接使用 | 否(需处理) | 是(可直接用于算法) |
应用场景 | 数据采集阶段 | 姿态估计、控制、显示等 |
🔹 四、举例说明(以加速度计为例)
假设你有一个加速度计,其原始输出为:
AxesRaw = [1200, 2000, 3000] // 单位:mg
经过校准和单位转换后,可能变为:
Axes = [1.2, 2.0, 3.0] // 单位:m/s²
在姿态估计中,这些 Axes
数据可能会用于计算横滚角和俯仰角。
🔹 五、总结
术语 | 含义 | 用途 |
---|---|---|
AxesRaw | 传感器原始数据 | 数据采集、原始信号处理 |
Axes | 处理后的数据 | 姿态估计、控制、显示等 |