
机器学习
文章平均质量分 53
cv吴彦祖
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
anaconda pip安装包的路径
打开anaconda prompt输入d:cd D:\anaconda\envs\pytorch>pip install原创 2021-09-23 10:33:41 · 2471 阅读 · 0 评论 -
目标检测评价指标(查准率 precision,查全率recall,PR曲线,AP,MAP,交并比iou,置信度,NMS)
作者:阿凿链接:https://www.zhihu.com/question/53405779/answer/429585383来源:知乎查准率 precision,查全率recall,PR曲线,AP,MAP明确问题: 大背景是object detection, 我就以正在学的RetinaNet应用背景为例, 识别出来的每一个框都有N+1个score, 对应着N个class和1个background, 我们会选score最高的那个作为最终的判断基本定义: precision和recall的含义, p原创 2021-09-17 16:06:47 · 1662 阅读 · 0 评论 -
吴恩达机器学习课后题---kmeans聚类
题目:对已知数据集进行聚类。最后对图片的像素值进行聚类数据集:https://www.heywhale.com/mw/project/5da961c8c83fb400420f3dd7/datasetpython代码:#给定一个二维数据集,使用kmeans进行聚类import numpy as npimport scipy.io as ioimport matplotlib.pyplot as plt#第一步 引入数据,可视化data1 = io.loadmat('C:/Users/1510原创 2021-09-16 11:14:58 · 391 阅读 · 0 评论 -
吴恩达机器学习课后题----支持向量机svm
题目:在本练习中,您将使用支持向量机(SVMs)来构建垃圾邮件分类器。数据集:https://www.heywhale.com/mw/project/5da961c8c83fb400420f3dd7/dataset原创 2021-09-09 13:28:35 · 494 阅读 · 0 评论 -
吴恩达机器学习课后习题---week4反向传播神经网络
题目:使用神经网络算法识别数据集中的手写数字,数据集包含有:数字集与初始theta值。、数据集:https://www.heywhale.com/mw/project/5da6bd34c83fb40042068a41/dataset步骤:构建神经网络模型——初始化向量——向前传播算法——计算代价函数——反向传播,计算偏导数项——(梯度检验)——高级优化算法下降梯度得到预测值theta——对比预测数据得出准确率。python代码:import numpy as npimport matplo原创 2021-09-03 10:37:43 · 626 阅读 · 0 评论 -
吴恩达机器学习课后作业--week3前馈神经网络
题目:这部分,你需要实现一个可以识别手写数字的神经网络。神经网络可以表示一些非线性复杂的模型。权重已经预先训练好,你的目标是在现有权重基础上,实现前馈神经网络。若已给定神经网络中的theta矩阵(需要用反向传播算法得出),实现前馈神经网络,理解神经网络的作用。题目已给出a(1)为第一层输入层数据,有400个神经元代表每个数字的图像(不加偏置值);a(2)为隐藏层,有25个神经元(不加偏置值);a(3)为输出层‘,又10个神经元,以10个(0/1)值的向量表示;theta1为第一层到第二层的参数矩原创 2021-09-02 10:35:13 · 403 阅读 · 0 评论 -
吴恩达机器学习中文版课后题(中文题目+数据集+python版答案)week2 逻辑回归
题目一:你将建立一个逻辑回归模型来预测一个学生是否被大学录取。假设你是一所大学系的管理员,你想根据两次考试的成绩来决定每个申请人的录取机会。您有以前申请者的历史数据,可以用作逻辑回归的训练集。对于每个培训示例,您都有申请人在两次考试中的分数和录取决定。你的任务是建立一个分类模型,根据这两次考试的分数来估计申请人的录取概率。数据集:34.62365962451697,78.0246928153624,030.28671076822607,43.89499752400101,035.847408769原创 2021-08-31 15:46:43 · 2253 阅读 · 0 评论 -
吴恩达机器学习中文版课后题(中文题目+数据集+python版答案)week1 线性回归
一、单线性回归问题题目一:您将使用一元线性回归来预测食品车的利润。假设你是一家特许餐厅的首席执行官,正在考虑在不同的城市开设一家新的分店。该连锁店已经在不同的城市有卡车,你有这些城市的利润和人口数据。您希望使用这些数据来帮助您选择下一个要扩展到的城市。文件ex1data1.txt包含我们的线性回归问题的数据集。第一栏是一个城市的人口,第二栏是那个城市的餐车利润。利润的负值表示亏损。ex1.m脚本已经设置好为您加载这些数据。数据集ex1data1.txt:8.5781,126.4862,6.598原创 2021-08-26 15:53:02 · 3038 阅读 · 0 评论