Week 1 Introduction to NLP and Language Modelling

目录

一、自然语言处理简史

1.1 1950 年代

1.2 1960-1970 年代

1.3 1970-1980 年代

1.4 1980-1990 年代

1.5 1990-2000 年代:机器学习的崛起

1.6 2000 年代:深度学习

二、语言模型可以用于哪些任务

2.1 Natural Language Tasks:Syntactic Tasks(句法任务)

2.2 Natural Language Tasks:Semantic Tasks(语义任务)

2.3 Natural Language Tasks:Pragmatics/Discourse Tasks(语用学/话语任务)

2.4 Natural Language Tasks:Other Tasks

三、N-gram 语言模型(重点)

3.1 链式法则(chain rule)

 3.2 马尔可夫假设(The Markov Assumption)

 3.3 N-gram的例子

 3.4 N-gram 语言模型的一些问题

四、Smoothed n-grams(平滑处理)- 给之前没有见过的事件赋予概率(重点) 

4.1 平滑处理的种类

4.2 计算公式(以bigrams 为例)- 拉普拉斯平滑(“加一” 平滑)

 4.3 计算公式(以unigram 为例)- 拉普拉斯平滑(“加一” 平滑)

五、评估语言模型

5.1 评估

5.2 Perplexity

5.3 Perplexity 得分的例子

六、总结


一、自然语言处理简史

1.1 1950 年代

  • Computing Machinery and Intelligence(计算机器与智能), Alan Turing
    • Turing test(图灵测试):通过一个对话测试来测量机器智能
  • Syntactic Structures(句法结构), Noam Chomsky
    • Formal language theory(形式语言理论):使用代数和集合论将形式语言定义为符号序列
    • 例如:Colourless green ideas sleep furiously.(无色的绿色思想激烈地沉睡。)
      • 该句子从意义上讲不通
      • 但它的语法似乎还不错
      • 强调了语义(含义)和句法(句子结构)二者的区别

1.2 1960-1970 年代<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

金州饿霸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值