
AI大模型
文章平均质量分 94
GPT5.0
27岁程序员
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
AI Agent案例与实践全解析:字节智能运维(9/30)
摘要: AI Agent(人工智能代理)是一种能够感知环境、自主决策和执行任务的智能实体,其概念可追溯至古希腊哲学思想,历经图灵测试、专家系统、机器学习等阶段,最终在深度学习推动下实现突破。AI Agent与大模型相辅相成:大模型提供知识储备与推理能力,而AI Agent通过调用外部工具(如搜索引擎、API接口)弥补大模型的局限性(如知识滞后、幻觉问题)。在智能运维领域,AI Agent通过多智能体协作、任务规划与执行等优势,显著提升复杂运维场景的效率和准确性。例如,字节智能运维AI Agent通过控制端原创 2025-07-31 10:30:00 · 972 阅读 · 0 评论 -
AI人工智能 - 4种革新性AI Agent工作流设计模式全解析
摘要:AI Agent(人工智能代理)是一种具备环境感知、决策和执行能力的智能实体,其概念可追溯至古希腊哲学思想,历经专家系统、机器学习等发展阶段,最终在深度学习时代取得突破。AI Agent与大模型存在紧密关联:大模型为其提供知识基础,而AI Agent则通过调用外部工具扩展大模型的应用边界。在智能运维领域,AI Agent能克服大语言模型的知识滞后、幻觉等问题,通过多智能体协同实现复杂任务处理。字节跳动提出的智能运维AI Agent框架以控制端(Brain)为核心,整合自然语言交互、知识储备、记忆模块和原创 2025-07-31 10:15:00 · 776 阅读 · 0 评论 -
大语言模型(LLM)入门学习路线图
Github项目上有一个,它涵盖了大语言模型基础学习,LLM前沿算法和架构学习,以及如何将大语言模型进行工程化,是一个很好的帮助初学者入门大语言模型的路线图。原创 2025-07-30 11:29:32 · 559 阅读 · 0 评论 -
【AI落地应用实战】LLM + TextIn文档解析技术实测 暨基于TextIn文档解析 + Kimi的智能文档解析助手
大模型文档解析面临多重挑战:1)图像处理环节难以准确矫正倾斜文档;2)版面分析中容易错判无线有线混排表格的逻辑结构;3)内容识别时容易遗漏数学公式的关键元素(如根号)。这些缺陷导致解析结果与原文不符,产生误导性输出。文章通过TextIn文档解析与Kimi的结合实践,探索提升智能文档解析准确性的解决方案,强调多模态信息解析能力对实现通用AI的重要性。原创 2025-07-30 11:28:22 · 679 阅读 · 0 评论 -
最强开源视觉大模型Qwen2.5-VL:本地部署完全免费
Qwen2.5-VL是新一代视觉语言模型,在物体识别、复杂文本分析、视频理解等方面表现优异,支持文档处理、金融等场景应用。本地部署需先安装Git和Python环境,克隆项目仓库后安装依赖项和CUDA支持的PyTorch。该模型在多领域任务中展现了强大性能,超越多个主流AI模型。原创 2025-07-29 11:30:00 · 867 阅读 · 0 评论 -
微调神器LLaMA-Factory官方保姆级教程来了,从环境搭建到模型训练评估全覆盖
这篇教程介绍了如何使用LLaMA-Factory项目对Meta-Llama-3-8B-Instruct模型进行LoRA+SFT微调训练。文章首先说明了开源大模型在垂直领域应用时需要微调的需求,并介绍了LLaMA-Factory项目整合多种高效训练技术的目标。教程详细说明了9个实践目标,包括模型推理、数据集构建、LoRA微调等核心功能。此外,文章还强调了训练前的4个必备条件:硬件环境、Python库安装、模型文件下载和数据集配置,并提供了CUDA环境和PyTorch安装的校验方法。本教程针对Linux+RTX原创 2025-07-29 11:00:00 · 1199 阅读 · 0 评论 -
【机器学习】Qwen2大模型原理、训练及推理部署实战
阿里Qwen2模型发布,相比Qwen1.5精简了模型尺寸(0.5B-72B共5个),新增57B-A14B MoE大模型。关键升级包括:所有模型采用GQA加速推理,7B/72B上下文扩展至128K,小模型采用tie embedding优化。架构上通过调整层数、注意力头等参数平衡效率与性能,72B模型在多项评测中超越Llama3-70B和Qwen1.5-110B。训练支持LLaMA-Factory框架,提供命令行和WebUI两种方式。该版本通过结构优化和数据增强显著提升模型能力。原创 2025-07-28 11:33:33 · 317 阅读 · 0 评论 -
本地部署大模型?Ollama 部署和实战,看这篇就够了
本文介绍了如何在本地部署和运行大模型工具Ollama,支持macOS、Windows和Linux系统。Linux服务器部署推荐使用一键安装命令,安装后可自定义配置如开放局域网访问和修改模型存储路径。安装完成后通过浏览器验证服务运行状态,Ollama为用户提供了便捷的本地大模型解决方案,配合Open WebUI可实现大模型自由。原创 2025-07-28 11:32:16 · 1417 阅读 · 0 评论 -
不知部署哪个版本?一文看懂Qwen3本地部署的配置要求
本文介绍了Qwen3系列大语言模型的显存占用问题,分析了影响显存的三个关键因素:模型规模(包括密集模型和MoE模型)、量化权重(降低精度减少显存)和KV缓存(优化计算但随上下文增长)。文章提供了不同量化级别模型的显存占用估算表,并指出24G显存的消费级显卡适合运行Q4_K_M量化的30B模型。最后通过实际测试对比不同尺寸模型的性能表现,推荐Qwen3-14B (Q8_0)作为平衡选择。文末还提供了AI大模型学习资料,帮助读者掌握相关技术。原创 2025-07-26 11:00:00 · 969 阅读 · 0 评论 -
在 Linux 本地玩转大模型:用 VLLM 部署 Qwen3 的高效实践
本文介绍了在本地硬件上部署Qwen3大语言模型与VLLM推理引擎的黄金组合方案。Qwen3具备双模式智能切换、多语言处理等优势,VLLM则通过动态批处理、量化压缩等技术提升推理效率。文章详细提供了从环境配置(需24GB显存NVIDIA显卡)、模型下载到服务启动的完整部署流程,重点推荐使用4bit量化版的Qwen3-8B模型,并给出了具体的启动命令参数说明。该方案使开发者能够在消费级硬件上高效运行大语言模型服务。原创 2025-07-26 10:30:00 · 614 阅读 · 0 评论 -
如何高效向GPT提问:从新手到专家的完全指南
本文系统介绍了如何高效使用GPT获取精准信息的提问技巧。文章首先强调了明确提问目标、提供详尽背景信息和清晰表述的重要性,指出分步骤提问和适时追问能显著提升沟通效率。其次,分析了GPT擅长回答的事实类、技术类、建议类和创意类问题,以及不擅长的主观性、敏感性和需要经验的问题。重点提出了向GPT提问的六大原则:信息清晰具体、语言简洁精准、分阶段提问、验证改进、持续反馈和巧妙设计互动结构。最后,文章还提供了评估答案质量的标准和追问澄清的技巧,帮助读者培养逻辑思维、跨领域整合、沟通反馈等能力,从而最大化利用GPT这一原创 2025-07-25 11:02:10 · 971 阅读 · 0 评论 -
【AI大模型前沿】Aero-1-Audio:Qwen2.5架构加持,轻量级音频模型天花板、吊打Whisper【稳跑+低资源】
Aero-1-Audio是一款由LMMs-Lab开发的轻量级音频处理模型,基于Qwen-2.5-1.5B语言模型构建,仅含1.5亿参数却性能出色。该模型采用高效训练方法,仅用16个H100 GPU一天完成训练,支持15分钟长音频连续处理,无需分割。核心功能包括高精度语音识别、复杂音频分析和指令驱动任务,在会议记录、实时转写等场景表现优异。其动态批处理和序列打包技术显著提升计算效率,适用于智能语音助手、教育转录等多种应用场景。原创 2025-07-25 11:00:39 · 749 阅读 · 0 评论 -
最强开源模型 Llama 3.1 部署推理微调实战大全
本文全面介绍了Meta最新开源的大型语言模型Llama 3.1,涵盖其8B/70B/405B三种参数规模和多语言支持等特性。文章提供从环境配置到模型推理、微调(包括数据集处理、Lora配置、训练参数设置等)的完整实战指南,并演示了API部署调用方法。通过性能评估展示了Llama 3.1在长文本处理方面的优势,同时为开发者准备了包括学习路线、商业化案例、视频教程等AI大模型学习资源包,助力开发者快速掌握这一前沿技术。原创 2025-07-24 10:20:21 · 347 阅读 · 0 评论 -
MiniCPM-V 2.6:端侧最强多模态大模型探索【本地部署实践】
MiniCPM-V 2.6 是由面壁智能推出的一款端侧 AI 多模态模型。它在保持较小参数规模的同时,展现出了强大的多模态处理能力,能够处理图像、视频等多种数据类型,并实现了一系列先进的功能。这款模型的出现,为端侧设备上的人工原创 2025-07-24 10:17:36 · 611 阅读 · 0 评论 -
RAG实战:借助RAGFlow做一个员工智能助理
本文分享了RAGFlow的部署实践与项目实操经验。在部署方面,详细介绍了阿里云服务器配置、Docker环境准备、内核参数调整等关键步骤。项目实操部分展示了如何构建企业内智能问答助手:通过Coze生成员工手册和培训文档,在RAGFlow中创建知识库并上传文档,最后配置Agent实现基于知识库的智能问答。文章特别指出RAGFlow在知识检索方面表现优异,但Agent工作流设计相比Coze/Dify更为复杂。整个流程涵盖了从环境搭建到应用落地的完整实践,为企业级RAG应用提供了参考方案。原创 2025-07-23 11:50:03 · 290 阅读 · 0 评论 -
零基础到精通学习AI大模型【附带学习路线】
AI大模型零基础学习指南:从入门到进阶 本文为AI大模型初学者提供系统学习路径。首先需掌握数学基础(线性代数、概率统计)和Python编程语言,随后学习机器学习、深度学习基本概念。推荐通过在线课程(Coursera等)、专业书籍和开源项目进行学习。实践环节建议从简单项目入手,逐步使用TensorFlow/PyTorch等框架。强调持续学习的重要性,包括关注学术会议、参与社区讨论和比赛。文末提供全套学习资源包(含视频教程、100+商业案例、200本电子书等),涵盖从基础理论到行业应用的全方位内容,帮助学习者构原创 2025-07-22 14:40:04 · 597 阅读 · 0 评论 -
【DeepSeek】在本地计算机上部署DeepSeek-R1大模型实战(完整版)
本地部署DeepSeek R1大模型的实践指南 本文介绍了如何在个人计算机上本地部署DeepSeek R1大模型。随着AI技术的发展,本地部署大模型在数据隐私、定制化需求和离线使用等方面具有显著优势。DeepSeek R1作为一款轻量级开源模型,支持在普通硬件(最低8GB内存+30GB存储)上运行,大幅降低了技术门槛。文章详细提供了从安装Ollama框架、下载模型到配置运行环境的完整教程,包括Python环境搭建、C++编译工具安装等关键步骤,并推荐使用Open WebUI提升交互体验。该指南特别强调无需专原创 2025-07-21 11:56:59 · 1062 阅读 · 0 评论 -
LLM大模型训练和预测如何计算算力需求?
本文介绍了AI大模型训练的关键要素:架构、数据和算力。重点分析了LLaMA-6B模型的算力需求,训练需要24GB显存(模型参数6GB+梯度6GB+优化器12GB),推理仅需6GB。文章还概述了Transformer的核心特性(多头注意力、视觉应用潜力)和AI大模型学习路线(7个阶段),包含从系统设计到商业化落地的完整知识体系,并提供了100套行业解决方案资源包。原创 2025-07-21 11:42:28 · 982 阅读 · 0 评论 -
OpenAI的官方Prompt工程指南详解 - 看这一篇真的就够了
直到前两天,12月15号,OpenAI在他们的文档里上线了Prompt engineering,也就是提示词工程指南,至此,终于算是有了一个权威且有效的Prompt工程标准文档。 我花了20分钟看完了后,其实挺会心一笑的,整篇指南简洁、...原创 2025-07-18 11:30:39 · 787 阅读 · 0 评论 -
大模型LLM:最清晰解读提示工程(Prompt Engineering)
本文介绍了提示工程(Prompt Engineering)的基本概念,即通过特定文本输入(Prompt)引导大语言模型(LLM)产生预期输出的技术。Prompt是用户与AI交互的初始文本,可以是问题、描述或关键词等。根据可解释性,Prompt可分为硬提示(手工制作的文本模板)和软提示(通过调优生成的数字嵌入);按交互方式分为在线提示(实时互动)和离线提示(批量处理);按应用领域分为信息检索、文本生成、翻译、情感分析等类别。理解提示工程有助于更好地利用LLM的能力和局限性。原创 2025-07-18 10:48:02 · 672 阅读 · 0 评论 -
RAG-MCP:突破大模型工具调用瓶颈,告别Prompt膨胀
摘要: 大语言模型(LLM)虽具备强大的自然语言处理能力,但其静态知识、上下文窗口限制及无法直接交互现实世界的缺陷,催生了外部工具调用技术。然而,随着工具数量激增,传统方法将所有工具描述全量注入Prompt导致Prompt膨胀(信息过载、Token消耗剧增)和决策过载(选择错误率上升)。论文《RAG-MCP》提出创新方案,引入**检索增强生成(RAG)**机制:通过外部向量化工具库动态检索与用户查询最相关的Top-k工具,仅将精简后的候选集注入LLM上下文。该方法显著降低Prompt长度和决策复杂度,实验显原创 2025-07-17 15:12:40 · 833 阅读 · 0 评论 -
零门槛,轻松体验阿里云 DeepSeek-R1 满血版:快速部署,立享超强推理能力
阿里云与深度求索(DeepSeek)联合推出DeepSeek-R1大模型服务,通过阿里云"百炼"平台提供零门槛的AI推理体验。该服务支持智能客服、代码生成、数学求解等场景,具备128K长文本处理能力。用户只需获取API-KEY即可快速接入,无需复杂部署。DeepSeek-R1作为开源大模型,在中文理解、数学推理等方面表现优异,特别适合开发者快速构建AI应用。阿里云平台提供稳定高效的推理服务,使开发者能轻松体验前沿AI能力,降低大模型使用门槛。原创 2025-07-17 14:40:46 · 737 阅读 · 0 评论 -
【AI大模型】跌倒监控与健康:技术实践及如何改变未来
本文探讨了基于AI的跌倒预警系统在医疗健康领域的应用。通过整合穿戴设备传感器数据(加速度计、陀螺仪、心率等),结合深度学习模型进行行为模式识别和跌倒预测。系统可应用于老年人监护、康复患者监测和高风险职业防护等场景。文章详细介绍了技术架构(数据采集、处理、模型训练、预警反馈等层次)和实际案例(老年社区、康复中心应用),分析了数据隐私、模型泛化、计算资源等挑战,并展望了多模态数据融合、个性化模型等未来研究方向。最后强调跨学科合作和政策支持对推动该技术发展的重要性。原创 2025-07-16 11:43:14 · 879 阅读 · 0 评论 -
一文速览推理模型DeepSeek R1:如何通过纯RL训练以比肩甚至超越OpenAI o1(含Kimi K1.5、QwQ-32B的解读)
安全大模型的应用可分为四个阶段:从开源基础模型的训练到安全专家模型的开发,再到智能体构建和最终生产环境部署。数据准备需结合开源和企业内部资源,并注重质量评估。基模选择需考量专业适配性、隐私保护和多语言支持,如Llama、QWEN和Mistral等。二次预训练和微调(包括强化学习)是关键优化步骤,强化学习尤其对提升模型推理能力至关重要。未来,支持灵活扩展的智能体架构将避免烟囱式建设,推动安全大模型的高效落地。原创 2025-07-15 10:44:34 · 550 阅读 · 0 评论 -
文心一言4.5开源模型实战:ERNIE-4.5-0.3B轻量化部署与效能突破
百度文心一言4.5开源模型ERNIE-4.5-0.3B实现轻量化部署突破,该3亿参数模型在FastDeploy框架支持下,仅需单张RTX 4090显卡即可处理百万级日请求。文章详解其技术架构的三层设计:知识增强层通过动态知识路由降低显存占用,推理架构层采用混合精度计算提升3倍速度,生态兼容层实现多平台适配。测试显示其中文场景精度达7B模型的92%,部署成本降至传统方案1/10,为中小企业提供高效安全的大模型落地方案。原创 2025-07-15 10:22:29 · 606 阅读 · 0 评论 -
DeepSeek各版本说明与优缺点分析
DeepSeek系列大模型各版本对比分析:V1版本于2024年1月发布,基于2TB数据训练,擅长编程语言处理,支持128K长文本上下文,但缺乏多模态支持且推理能力较弱;V2版本增强了数学推理和代码解释能力,优化了中文处理,但计算资源消耗较大;V3版本添加了多模态支持,强化了逻辑推理,但模型复杂度增加。整体而言,DeepSeek系列在持续迭代中不断提升性能,开发者可按需选择合适的版本。原创 2025-07-12 15:05:56 · 859 阅读 · 0 评论 -
RAGFlow:基于OCR和文档解析的下一代 RAG 引擎
Ragged Tensors(不规则张量)是机器学习中处理变长数据的有效工具,尤其适用于自然语言处理、计算机视觉和时间序列分析等领域。与传统张量不同,Ragged Tensors允许不同维度的子张量具有不同长度,避免了填充操作带来的计算开销和数据失真。其结构包含值张量和偏移量张量,能够高效存储和处理变长序列数据(如不同长度的句子、不规则图像或不均匀时间序列)。在TensorFlow等框架中,Ragged Tensors通过保持数据原始结构,显著提升了模型处理复杂数据的效率和准确性。原创 2025-07-12 10:45:00 · 886 阅读 · 0 评论 -
RAGFlow:基于OCR和文档解析的下一代 RAG 引擎
RAGFlow是一款开源的端到端检索增强生成(RAG)系统,通过深度文档理解技术解决传统RAG在数据处理和答案生成中的挑战。其核心功能包括:支持多种文档格式的智能解析、可控可解释的文本切片、降低生成幻觉、兼容异构数据源以及自动化RAG工作流。技术架构涵盖文档解析器、查询分析器、检索、重排和LLM等组件,其中DeepDoc作为核心模块提供OCR、布局识别和表格结构识别能力。RAGFlow强调可视化交互和人工干预,支持用户调整文本分块过程,并通过引用溯源增强结果可信度。开源后迅速获得2900 GitHub星标,原创 2025-07-11 14:41:01 · 390 阅读 · 0 评论 -
从检索到生成:RAG 如何重构大模型的知识边界?
摘要: RAG(检索增强生成)技术通过结合信息检索与大语言模型(LLM),解决LLM在实时性、专业性任务中的知识局限问题。其演进分为三个阶段:Naive RAG(基础检索-生成流程,存在检索精度与生成整合问题)、Advanced RAG(优化检索策略与上下文处理)和Modular RAG(模块化平台架构,支持灵活扩展)。相比微调(Fine-tuning),RAG具备知识可更新、成本低等优势,适用于动态知识场景,而两者结合可进一步提升模型性能。未来,RAG将向更深度知识融合与工业级应用发展。原创 2025-07-11 14:09:07 · 329 阅读 · 0 评论 -
LLM 赋能的研发效能:如何探索软件开发新工序?
LLM 赋能的研发效能:如何探索软件开发新工序?原创 2025-07-09 10:00:00 · 833 阅读 · 0 评论 -
大语言模型友好的 API:借助集体智慧构建更好的软件架构
摘要:本文探讨如何利用大语言模型(LLM)优化企业API设计,提出【开源LLM+LoRA微调】的私有化解决方案。针对传统API设计的三大痛点(开放资源决策难、需求驱动碎片化、RESTful标准落地难),文章提出构建"LLM友好的API"模式,通过六步法实现闭环优化:识别软件资产→格式化建模→MVP微调→设计评估指标→工具集成→反馈迭代。该方案强调将企业既有架构资产转化为结构化语料,通过持续反馈机制形成"集体智慧飞轮",最终提升API设计的开放性与现代化水平。(149字原创 2025-07-08 11:57:49 · 912 阅读 · 0 评论 -
主流ai知识库工具FastGPT、Dify、Coze横评
RAG(检索增强生成)技术结合检索与生成能力,提升AI输出的准确性和可解释性。FastGPT、Dify和Coze三款产品均基于RAG技术,但各有侧重:FastGPT专注知识库问答,支持复杂工作流编排;Dify作为AI应用开发平台,支持多种大模型接入;Coze则侧重聊天机器人开发,对字节生态更友好。横向对比显示,FastGPT功能全面,Dify配置便捷,Coze在特定场景表现优异。三款产品均支持知识库和工作流编排,用户可根据需求选择适合的平台。原创 2025-07-07 17:23:01 · 1022 阅读 · 0 评论 -
一文了解——大模型在金融行业的应用场景和落地路径
大模型在金融领域的应用与风险防范 本文探讨了大模型技术在金融领域的应用前景和潜在风险。金融行业作为信息密集型产业,是大模型技术的理想应用场景,主要应用于金融风险管理、量化交易、个性化投资建议、欺诈检测和智能客服五大领域。然而,大模型应用也面临数据隐私、模型可解释性、监管合规等挑战。文章对比了欧美与中国在AIGC技术治理方面的实践,提出了金融机构采用AIGC技术的四条可能路径。研究表明,虽然大模型为金融业带来变革机遇,但需要建立完善的风险管理体系,平衡技术创新与合规要求。原创 2025-07-04 11:57:22 · 1004 阅读 · 0 评论 -
深度剖析DeepSeek大模型:技术架构详览、应用场景探索
DeepSeek大模型技术解析与应用前景 DeepSeek是由中国深度求索团队开发的高效预训练语言模型,以轻量化架构、多模态融合和垂直领域优化为核心优势。其采用改进的Transformer架构,结合稀疏注意力与动态路由网络,显著提升推理效率,并支持MoE混合专家系统以适应复杂任务。模型涵盖1B至70B+参数量级,适用于移动端至科研场景。 在应用层面,DeepSeek已落地金融客服(解决率提升40%)、工业质检(漏检率降至0.3%)、医疗诊断等场景,提供私有化部署方案,兼顾性能与数据安全。相比竞品,其延迟降低原创 2025-07-04 11:10:50 · 731 阅读 · 0 评论 -
大模型在金融行业的应用场景和落地路径
《大模型在金融行业的应用与风险分析》摘要 本文由全栈工程师爱编程的喵喵撰写,探讨了大模型技术在金融领域的发展现状与挑战。文章首先介绍了大模型在金融风险管理、量化交易、欺诈检测等5个典型应用场景的价值,指出其能降低中小银行AI应用门槛。随后分析了数据隐私、模型可解释性等5大风险挑战,并对比了中欧美在AIGC治理方面的实践差异。最后提出了金融机构应用AIGC技术的4条可行路径,包括直接使用API、构建行业模型等方案,为金融从业者提供了大模型落地的实践参考。文章强调在享受技术红利的同时,需重视风险管理与合规要求。原创 2025-07-03 14:52:41 · 730 阅读 · 0 评论 -
DeepSeek R1,本地部署才是王道!支持WebUI
DeepSeek R1本地部署指南:享受无限制、高隐私AI体验 摘要:DeepSeek R1作为对标OpenAI的高性能开源AI模型,近期因官网访问受限引发本地部署需求。本文提供完整部署方案:通过Ollama+Open-WebUI组合实现一键部署,支持Windows/macOS/Linux系统。部署优势包括数据隐私保护、离线使用、永久免费及灵活定制。教程详细涵盖Ollama安装、模型下载(提供1.5B-70B多版本选择)、WebUI配置及性能测试方法,特别给出不同显存设备的适配建议(如8GB显存推荐7B模型原创 2025-07-03 11:38:19 · 1066 阅读 · 0 评论 -
从API到Agent:万字长文洞悉LangChain工程化设计
我想做一个尝试,看看能不能用尽量清晰的逻辑,给“AI外行人士”(当然,我也是)引入一下LangChain,试着从工程角度去理解LangChain的设计和使用。同时大家也可以将此文档作为LangChain的“10分钟快速上手”手册,本意是希望帮助需要的同学实现AI工程的Bootstrap。原创 2025-07-02 14:33:38 · 780 阅读 · 0 评论 -
DeepSeek+Coze实战:如何从0到1搭建一个账号定位智能体(AI Agent)
这篇文章介绍了如何利用AI智能体帮助短视频创作者进行账号定位策划。主要内容包括:1)账号定位策划智能体的功能,如个人分析、目标受众画像、差异化定位和内容策划建议;2)智能体的创建步骤,包括设置人设、逻辑和测试;3)通过烘焙店主案例展示智能体的实际应用效果。该工具能帮助创作者快速找准市场定位,提升内容创作效率,适合新手和有经验的创作者使用。文章还提供了AI大模型学习资料领取方式。原创 2025-07-02 11:36:44 · 764 阅读 · 0 评论 -
SpringBoot+Spring AI Alibaba接入RAG应用实战,让你的微服务应用具备智能化能力,小白也能快速上手
本文介绍了如何利用阿里云百炼平台零代码构建RAG(检索增强生成)应用,并演示了将Spring Boot应用接入智能体的方法。首先通过上传知识库文档创建私有知识索引,然后基于通义千问模型构建智能体应用,成功实现私域知识问答。接着展示了如何发布智能体,并通过Spring AI Alibaba Starter快速集成到Java应用中。整个过程无需编写代码即可完成RAG应用搭建,同时提供了灵活的API接入方式,帮助开发者轻松为传统应用添加AI能力。原创 2025-07-01 10:39:01 · 1007 阅读 · 0 评论 -
【LLM大模型】prompt 工程(Prompt Engineering)
Prompt(提示词)是一个 指令 、问题或者语句,能被用来引导或指示一个语言模型生成特定的文本输出。Prompt是用户与语言模型交互的起始点,它告诉模型用户的意图,并且期望模型能以有意义且相关的方式回应。通过精心设计的prompt,我们可以引导大语言模型(LLM)更好地理解用户的意图,并生成更准确、有用的回答。Prompt工程涉及开发、优化和测试迭代prompt,以帮助用户有效地与语言模型进行交互。原创 2025-06-30 17:38:21 · 970 阅读 · 0 评论