9个点画10条直线,要求每条直线上至少3个点

本文探讨如何利用移动开发领域的知识解决一个特定的数学问题——在10个点中画出10条线,使得每条线穿过3个点。通过移动部分关键点的位置,实现从8条线到9条线再到最终的10条线的转变。文章详细介绍了这一过程,包括点连线问题的初始状态、改进策略以及最终解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最容易想到的就是试试把9个点摆成规整的3行,如下图所示:

但只能画出8条线。

其实,每条线穿过3个点,则10条线要穿过30个点,这要求平均每个点上有大于3条线穿过。
图中中心和4个角上的点都有>=3条线穿过,而另外4个点则仅有两条线穿过。所以必然要移动这4个点。
 
把第一行和第三行中间的点往右移,这样减少了一条线(即图中虚线),但可以增加两条线(即图中红线)。这样能画出9条线,已经有转机了。结果见下图:
 
再看,图中上下是对称的,但左右并不对称。把第二行最左边的点右移到对称的位置,如下图所示,则减少了一条线(即图中虚线),但增加了两条线(图中红线),刚好10条线,OK。结果见下图:
概率霍夫变换(Probabilistic Hough Transform, PHT)是霍夫变换的一种优化形式,用于检测图像中的直线。与传统的霍夫变换不同,PHT仅对一部分随机选择的边缘进行计算,因此可以大大降低计算成本。 PHT的原理与霍夫变换类似,仍然是将边缘从笛卡尔坐标系转换到极坐标系,并在极坐标空间中对每个边缘点画出一直线。然而,PHT只对一部分随机选择的边缘进行计算,并在此基础上估计直线参数的概率分布。具体步骤如下: 1. 随机选择一组边缘:从所有边缘中随机选择一定数量的,作为当前估计直线的样本。 2. 计算直线参数:根据随机选取的样本,在极坐标空间中计算估计直线的参数。 3. 匹配边缘:将所有边缘与估计直线进行匹配,并统计匹配的数量。 4. 判断直线:如果匹配的数量超过设定的阈值,则认为当前估计直线是一合法直线。 5. 更新估计直线:如果当前估计直线是一合法直线,则将其存储下来,并从所有未匹配的边缘中随机选择新的样本,重复以上步骤。 6. 可视化输出:将检测到的直线在原始图像上进行可视化输出。 PHT相对于传统的霍夫变换,可以有效地降低计算成本,并且可以处理部分曲线和多直线的情况。但是,由于使用了随机选择的样本,可能会存在漏检或误检的情况。因此,需要根据具体应用场景进行调整和优化,以获得更准确和高效的检测结果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值