Windows下的PaddleOCR本地部署

目录

一、环境配置

(一)PaddlePaddle运行环境部署

1.安装anaconda(网上教程很多很详细)

2.创建环境

3.激活环境并在该环境下安装PaddlePaddle框架

4.下载requirments.txt中的库

(二)PaddleOCR安装【非重点】

二、在自己的数据集上训练模型

(一)制作自己的数据集

1.安装PPOCRLabel并为自己的数据打标签,构建数据集

2.数据集的划分

(二)训练

1.文本检测训练

2.文本识别训练

(三)测试

1.文本检测模型测试

2.文本识别模型测试

(四)转换为推理模型

1.文本检测模型

2.文本识别模型

(五)检测模型和识别模型推理

(六)转换label并计算准确度指标

三、模型转换onnx

(一)环境准备

(二)模型转换

(三)推理预测

代码:从网址中下载压缩包并解压缩得到名为“PaddleOCR-main”的文件夹(我直接放到了桌面上)。

GitHub - PaddlePaddle/PaddleOCR: Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)

一、环境配置
(一)PaddlePaddle运行环境部署
1.安装anaconda(网上教程很多很详细)
2.创建环境
conda create --name padocr python=3.9
 
# 检查是否是64位版本(基本上都是) 
python --version
python -c "import platform;print(platform.architecture()[0]);print(platform.machine())"
3.激活环境并在该环境下安装PaddlePaddle框架
飞桨PaddlePaddle-源于产业实践的开源深度学习平台

conda activate padocr
 
# 比自己电脑的cuda版本低就行,我这里下载的我电脑可以接受的最新的
conda install paddlepaddle-gpu==2.6.1 cudatoolkit=11.6 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/ -c conda-forge
 
# 检查是否安装成功
import paddle
paddle.utils.run_check() # 如果出现PaddlePaddle is installed successfully!,说明已成功安装
4.下载requirments.txt中的库
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
(二)PaddleOCR安装【非重点】
如果训练自己的数据集,则不需要安装。

参考资料:

PaddleOCR/doc/doc_ch/quickstart.md at main · PaddlePaddle/PaddleOCR · GitHub
PaddleOCR开源代码有NameError: name ‘predict_system‘ is not defined问题-CSDN博客
pip install paddleocr==2.7.0.0 -i https://mirror.baidu.com/pypi/simple
 
# 放一张图片在桌面上,测试安装是否成功
cd Desktop
paddleocr --image_dir img.pdf --use_angle_cls true --use_gpu false
在测试的过程中,出现了OMP的错误,显示如下。


解决该错误的方法如下(这里我同样属于情况一,删去其中一个,问题就解决了):

总结该问题解决方案:OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized-CSDN博客

【补充,没有这些错误就不用看了】

注意:如果上面安装出现问题时,比如缺少shapely,可以采用如下的方法。

对于Windows环境用户:直接通过pip安装的shapely库可能出现[winRrror 126]找不到指定模块的问题。建议从下面网址下载shapely安装包完成安装。

Links for shapely (tsinghua.edu.cn)

(1)下载shapely安装包并将其放置在“PaddleOCR-main”文件夹中

<think>好的,我需要帮助用户了解如何部署PaddleOCR。根据用户提供的引用内容,我需要整理出清晰的步骤,并确保符合系统级指令的要求。 首先,用户引用了四个关于PaddleOCR部署的资料,涵盖了环境安装、数据集制作、应用案例以及Windows本地部署等内容。我需要将这些信息整合成一个结构化的部署教程。 第一步是环境搭建。根据引用1和4,需要安装PaddlePaddle框架和PaddleOCR。要确认Python版本是否符合要求,比如Python 3.6以上。安装命令可能需要使用pip,同时要注意GPU和CPU版本的选择,根据用户是否有CUDA环境来决定。 第二步是安装依赖库,比如PaddleLabel用于标注数据,这部分在引用1中提到。需要列出必要的库,如PyMuPDF和shapely,特别是对于Windows用户,可能需要通过whl文件安装。 接下来是数据集准备,引用1和2提到了数据集制作和标注。这里需要指导用户使用PaddleLabel进行标注,并正确划分训练集、验证集和测试集。要强调数据格式的转换,如导出为VOC或COCO格式,并生成对应的txt文件。 然后是模型选择与配置,引用4的GitHub链接中有预训练模型,用户需要下载并根据需求调整配置文件,比如修改检测和识别模型的路径。 部署应用部分,引用3提到了Windows下的本地部署,可能需要指导用户如何运行预测代码,处理图像输入,并输出OCR结果。代码示例需要符合Python语法,并且使用正确的API调用方式,如使用paddleocr.PPStructure进行表格识别。 最后,用户可能需要优化部署,比如使用ONNX转换或Triton推理服务,这部分引用2提到了学术加速,可能涉及性能优化的方法。 在整理过程中,要确保所有数学公式和代码块符合格式要求,比如变量用$...$包裹,代码块用三个反引号注明语言。同时,每个步骤末尾添加对应的引用标记,如[^1][^2]等。 现在需要检查是否有遗漏的步骤,比如环境验证是否安装成功,可能需要在安装后运行简单的导入命令检查。另外,Windows用户可能遇到的特定问题,如依赖库的安装问题,是否需要额外说明,比如安装Shapely时的注意事项。 还需要确保回答结构清晰,分步骤说明,并使用中文。最后生成相关问题,可能涉及部署中的常见问题、性能优化方法以及应用场景等。 总结一下,回答的结构大致分为环境搭建、安装依赖、数据集准备、模型配置、部署应用、优化建议几个部分,每个部分包含具体命令和操作,并附上引用来源。最后列出相关问题,帮助用户深入了解更多内容。</think>### PaddleOCR部署教程 #### 一、环境搭建 1. **安装PaddlePaddle框架** 根据硬件环境选择CPU或GPU版本(需提前配置CUDA): ```bash # CPU版本 pip install paddlepaddle # GPU版本(CUDA 11.2) pip install paddlepaddle-gpu==2.3.2.post112 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html ``` 2. **安装PaddleOCR** 从GitHub克隆仓库并安装依赖: ```bash git clone https://github.com/PaddlePaddle/PaddleOCR cd PaddleOCR pip install -r requirements.txt ``` 引用[^4] #### 二、依赖库安装 - **Windows额外依赖** 需手动安装`PyMuPDF`和`Shapely`: ```bash pip install PyMuPDF==1.18.17 # 从第三方whl文件安装Shapely(如遇兼容性问题) ``` 引用[^3] #### 三、数据集准备 1. **标注工具安装** 使用PaddleLabel标注数据: ```bash pip install paddlelabel ``` 2. **数据格式转换** 标注后导出为VOC/COCO格式,生成训练文件`train.txt`、`val.txt`。 引用 #### 四、模型选择与配置 1. **下载预训练模型** 从PaddleOCR的Model Zoo选择模型(如`ch_PP-OCRv3_det`): ```bash wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar tar -xvf ch_PP-OCRv3_det_distill_train.tar ``` 2. **修改配置文件** 在`configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml`中指定模型路径和数据集路径。 引用[^4] #### 五、部署与运行 1. **命令行调用** 使用内置脚本预测图像: ```bash paddleocr --image_dir ./imgs/11.jpg --use_angle_cls true --use_gpu false ``` 2. **Python API调用** 编写自定义脚本: ```python from paddleocr import PaddleOCR ocr = PaddleOCR(use_angle_cls=True, lang="ch") result = ocr.ocr("image.jpg", cls=True) for line in result: print(line[0][1]) # 打印识别文本 ``` 引用[^3][^4] #### 六、优化部署(进阶) - **模型轻量化**:使用量化工具压缩模型 - **服务化部署**:通过PaddleServing或Triton Inference Server发布API服务
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值