【Touchdesigner 】实时处理图像的滤镜组

本文详细介绍音视频处理软件中的核心功能,包括文件管理、播放控制、特效应用、分辨率调整及输出设置。涵盖MovieFileInTOP、SwitchTOP、EdgeTOP等模块的使用技巧,以及RampTOP、MonochromeTOP和ChromaKeyTOP的参数调整方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Movie File In TOP

File(文件):指定文件路径。除了本地路径,也可以为互联网上的地址。

Rwload(重新加载):重新加载所选文件。

Play(播放):视频的播放与暂停。

Cue(提示):从提示点开始播放视频

Cue Point(提示点):设置提示点。


Switch TOP

Index(索引):通过设置参数选择其中一个对应输入端进行输出。

Blend Btween Inputs(渐变切换):允许输入端之间渐变切换选项。关闭,各输入之间的切换是无过渡的“硬切”;打开,输入之间的切换是有过渡的“软切”。

各输入排列顺序在switch的菜单最下方,点击左侧箭头调整顺序


Edge TOP

Select(勾边参考量):选择根据图片的亮度,RGB值等进行勾边。

Black Level(勾边精度):数值越高,勾边的细节越多

Strength(勾边强度):数值越高,勾边就越明显。

Edge Color(勾边颜色):勾边线条的颜色。


Composite TOP

Fixed Layer 指的是以第一或者第二个输入端的分辨率为输出分辨率,当前两个输入端分辨率不同时,可以通过Pre-Fit Overlay中的参数选择拉伸模式。

Fixed Layer(固定层):将输出图像的分辨率对应input1或input2的分辨率。

Pre-Fit Overlay(适应覆盖层):设定覆盖层分辨率的适应类型。

Justify Horizontal(水平对齐):水平对齐方式。

Justify Vertical(垂直对齐):垂直对齐的方式。

Operation(操作):参数中提供了多种图像的混合方式。

 


Ramp TOP

Ramp TOP 可以用于生成色谱,点击参数页面色谱上方的空白处可以添加关键点,拖拽关键点到色谱外可以删除关键点。

Type(色谱类型):可以选择Vertical(垂直),Horizontal(水平),Radial(放射),Circular(圆形)四种类型.

Phase(相位):调整渐变区的偏移量。

Period(周期):调整渐变区域的宽度范围。

Interpolate Notches(关键帧之间的过渡):改变关键帧之间颜色的过渡类型。


Monochrome TOP

Monochrome(黑白):调整图片中的显色度。0是全彩色,1是灰度图。

RGB(RGB值):以输入图像RGBA其中一个通道作为黑白通道的value值。

Alpha(透明度):以输入图像RGBA其中一个通道作为黑白通道的Alpha值。


Chroma Key TOP

CHroma Key TOP 可以结合Hue(色相),Saturation(饱和),Value(明度)将图像中的特定色块抠除,可以在相应的参数页面看到对这些参数的最大,最小值设置。


Window 

Window COMP 对多个显示器进行编辑。

Window Operator(窗口操作):需要显示的对象。

Monitor(显示器):输出显示器的编号。

Justify Horizontal(水平对齐):设置水平对齐位置

justify Vertical(垂直对齐):设置垂直对齐位置

Borders(边框):打开标题栏,当没有标题栏的时候,鼠标单击视窗,再按键盘ESC关闭窗口。

Open as Separate Window (以单独输出视窗显示):在编辑界面之外打开输出窗口。


Movie File Out TOP

Type(文件类型):视频或图片的格式

File(文件):文件路径与名称

Video Codec(视频编码):如果有声音输入,可以指定音频文件的路径。

Record(录制):开启后视频开始录制,再次关闭时停止录制。


### TouchDesigner与人工智能的集成及其应用场景 #### 当前状态和发展趋势 TouchDesigner作为一种强大的实时媒体服务器软件,在创意编程领域占据重要地位。随着近年来机器学习和深度学习技术的发展,越来越多的研究者和开发者尝试将其应用于艺术创作、交互设计等领域。虽然官方文档中并未直接提及与特定AI框架的合作计划[^1],但从社区反馈来看,已经有不少成功的案例展示了如何通过Python脚本接口实现对TensorFlow、PyTorch等流行库的支持。 #### 技术实现方式 为了使TouchDesigner能够处理复杂的神经网络模型推理任务,通常的做法是在外部环境中训练好模型并导出为ONNX或其他通用格式文件。之后利用Chops节点或者自定义OPs来加载这些预训练好的权重参数,并调用相应的API完成预测操作。对于某些轻量级的任务也可以考虑直接嵌入完整的ML环境到项目内部,但这可能会增加部署难度以及运行时资源消耗。 #### 应用实例分析 - **智能视觉效果生成**:借助卷积神经网络(CNN),可以根据输入图像自动调整滤镜强度或风格化程度;还可以基于GAN架构创造出全新的纹理图案。 - **自然语言理解驱动装置控制**:结合RNN/LSTM单元解析语音命令,进而触发场景切换或是改变物体属性。 - **行为识别辅助表演捕捉**:运用姿态估计算法跟踪演员动作轨迹,实现实时动画同步播放功能。 ```python import torch from torchvision import models, transforms from PIL import Image def load_model(path): model = models.resnet50(pretrained=False) checkpoint = torch.load(path,map_location=torch.device('cpu')) model.load_state_dict(checkpoint['model']) return model.eval() transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), ]) image_path = 'example.jpg' img = Image.open(image_path).convert('RGB') input_tensor = transform(img)[None,...] # Load pre-trained ResNet50 Model resnet = load_model('./pretrained/resnet.pth') with torch.no_grad(): output = resnet(input_tensor) print(output.argmax().item()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值