Spark Streaming 编程新手入门指南

Spark Streaming是Apache Spark的扩展,用于实时数据流处理,支持Kafka、Flume等数据源,提供DStream抽象,可在多种环境中运行。文章介绍了Spark的核心特性和一个简单的统计单词数的入门案例,以及初始化StreamingContext的基本步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Spark Streaming 是核心Spark API的扩展,可实现实时数据流的可伸缩,高吞吐量,容错流处理。可以从许多数据源(例如Kafka,Flume,Kinesis或TCP sockets)中提取数据,并且可以使用复杂的算法处理数据,这些算法用高级函数表示,如map、reduce、join和window。最后,可以将处理后的数据推送到文件系统,数据库和实时仪表板。实际上,可以在数据流上应用Spark的机器学习和图形处理算法。

在内部,它的工作方式如下。 Spark Streaming接收实时输入数据流,并将数据分成批次,然后由Spark引擎进行处理,以生成批次的最终结果流。

Spark Streaming提供了一种高级抽象,称为离散流或DStream,它表示连续的数据流。DStreams可以从Kafka、Flume和Kinesis等源的输入数据流创建,也可以通过在其他DStreams上应用高级操作创建。在内部,DStream表示为RDDs序列。

1. 了解Spark

Apache Spark 是一个用于大规模数据处理的统一分析引擎

    

特性:

将工作负载运行速度提高100倍

Apache Spark使用最新的DAG调度程序,查询优化器和物理执行引擎,为批处理数据和流数据提供了高性能。

易用

可以使用Java,Scala,Python,R和SQL快速编写应用程序。

通用

结合SQL、流和复杂的分析

Spark为包括SQL和DataFrames,用于机器学习的MLlib,GraphX和Spark Streaming在内的一堆库提供支持。您可以在同一应用程序中无缝组合这些库。

到处运行

Spark可在Hadoop,Apache Mesos,Kubernetes,独立或云中运行。它可以访问各种数据源。

可以在EC2,Hadoop YARN,Mesos或Kubernetes上使用其独立集群模式运行Spark。访问HDFS,Alluxio,Apache Cassandra,Apache HBase,Apache Hive和数百种其他数据源中的数据。

2. 入门案例

统计单词出现的次数,这个例子在Hadoop中用MapReduce也写过。

JavaStreamingContext是java版的StreamingContext。它是Spark Streaming功能的主要入口点。它提供了从输入源创建JavaDStream和JavaPairDStream的方法。可以使用context.sparkContext访问内部的org.apache.spark.api.java.JavaSparkContext。在创建和转换DStream之后,可以分别使用context.start()和context.stop()启动和停止流计算。

 1 public static void main(String[] args) throws InterruptedException {
 2     // Create a local StreamingContext with two working thread and batch interval of 1 second
 3     SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount");
 4     JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(1));
 5 
 6     // Create a DStream that will connect to hostname:port, like localhost:9999
 7     JavaReceiverInputDStream<String> lines = jssc.socketTextStream("localhost", 9999);
 8 
 9     // Split each line into words
10     JavaDStream<String> words = lines.flatMap(x -> Arrays.asList(x.split(" ")).iterator());
11 
12     // Count each word in each batch
13     JavaPairDStream<String, Integer> pairs = words.mapToPair(s -> new Tuple2<>(s, 1));
14     JavaPairDStream<String, Integer> wordCounts = pairs.reduceByKey((i1, i2) -> i1 + i2);
15 
16     // Print the first ten elements of each RDD generated in this DStream to the console
17     wordCounts.print();
18 
19     // Start the computation
20     jssc.start();
21     // Wait for the computation to terminate
22     jssc.awaitTermination();
23 }

3. 基本概念

3.1. Maven依赖

1 <groupId>org.apache.spark</groupId>
2     <artifactId>spark-streaming_2.12</artifactId>
3     <version>2.4.5</version>
4     <scope>provided</scope>
5 </dependency>

为了从其它数据源获取数据,需要添加相应的依赖项spark-streaming-xyz_2.12。例如:

1 <dependency>
2     <groupId>org.apache.spark</groupId>
3     <artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
4     <version>2.4.5</version>
5 </dependency>

3.2. 初始化StreamingContext

为了初始化一个Spark Streaming程序,必须创建一个StreamingContext对象,该对象是所有Spark Streaming功能的主要入口点。 

我们可以从SparkConf对象中创建一个JavaStreamingContext对象

1 import org.apache.spark.SparkConf;
2 import org.apache.spark.streaming.Duration;
3 import org.apache.spark.streaming.api.java.JavaStreamingContext;
4 
5 SparkConf conf = new SparkConf().setAppName(appName).setMaster(master);
6 JavaStreamingContext ssc = new JavaStreamingContext(conf, new Duration(1000)); 

appName 参数是显示在集群UI上的你的应用的名字

master 参数是一个Spark、 Mesos 或 YARN 集群URL,或者也可以是一个特定的字符串“local[*]”表示以本地模式运行。实际上,当在集群上运行时,肯定不希望对在程序中对master进行硬编码,而希望通过spark-submit启动应用程序并在其中接收它。然而,对于本地测试,你可以传“local[*]”来运行Spark Streaming。

还可以从一个已存在的JavaSparkContext中创建一个JavaStreamingContext对象

 

 

更多干货 请点击这里

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值