今天是机器学习的第15篇文章,之前的文章当中讲了Kmeans的相关优化,还讲了大名鼎鼎的EM算法。有些小伙伴表示喜欢看这些硬核的,于是今天上点硬菜,我们来看一个机器学习领域经常用到的数据结构——KD-Tree。
从线段树到KD树
在讲KD树之前,我们先来了解一下线段树的概念。线段树在机器学习领域当中不太常见,作为高性能维护的数据结构,经常出现在各种算法比赛当中。线段树的本质是一棵维护一段区间的平衡二叉树。
比如下图就是一个经典的线段树:
从下图当中我们不难看出来,这棵线段树维护的是一个区间内的最大值。比如树根是8,维护的是整个区间的最大值,每一个中间节点的值都是以它为树根的子树中所有元素的最大值。
通过线段树,我们可以在的时间内计算出某一个连续区间的最大值。比如我们来看下图:
当我们要求被框起来的区间中的最大值,我们只需要找到能够覆盖这个区间的中间节点就行。我们可以发现被红框框起来的两个节点的子树刚好覆盖这个区间,于是整个区间的最大值,就是这两个元素的最大值。这样,我们就把一个需要