Tensorflow— saver_save

本文介绍了一个基于TensorFlow的手写数字识别模型。该模型使用了MNIST数据集进行训练,并通过简单的神经网络实现了较高的识别准确率。文章详细展示了从数据加载到模型训练的全过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代码:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data


#载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)

运行结果:

Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

代码:

#每个批次100张照片
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size

#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])

#创建一个简单的神经网络,输入层784个神经元,输出层10个神经元
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b)

#二次代价函数
# loss = tf.reduce_mean(tf.square(y-prediction))
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

#初始化变量
init = tf.global_variables_initializer()

#结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))


# 定义一个saver
saver = tf.train.Saver()


with tf.Session() as sess:
    sess.run(init)
    for epoch in range(11):
        for batch in range(n_batch):
            batch_xs,batch_ys =  mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
        
        acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
        print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))
    #保存模型
    saver.save(sess,'net/my_net.ckpt')

运行结果:

Iter 0,Testing Accuracy 0.8237
Iter 1,Testing Accuracy 0.8937
Iter 2,Testing Accuracy 0.9018
Iter 3,Testing Accuracy 0.906
Iter 4,Testing Accuracy 0.9089
Iter 5,Testing Accuracy 0.9111
Iter 6,Testing Accuracy 0.9118
Iter 7,Testing Accuracy 0.9128
Iter 8,Testing Accuracy 0.9147
Iter 9,Testing Accuracy 0.916
Iter 10,Testing Accuracy 0.9168

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值