物联网基础

一、概述

1.1 定义

物联网(Internet of Things,简称 IoT)这一术语由Kevin Ashton于1999年提出,是一种利用各种传感器将物体与互联网相联系,并按照一定的规则进行数据交互和通信,从而实现智能化识别、定位、跟踪、监控和管理的一种网络。经过20多年的发展,物联网已经演变为一个包含感知层、网络层、平台层和应用层的完整技术生态系统。

1.2 发展历程

1.2.1 国外发展情况

“物联网” 这个术语最初是由比尔盖茨在 1995 年发表的《未来之路》一书中提出来的,但由于受到科技发展程度的限制,这个术语一直没有被人们所关注。

1999 年,美国、中国、日本等 6 个国家基于产品电子编码和互联网提出了物品联网这一新的理念。

2005 年,由国际电信联盟(ITU)公布的《ITU 互联网报告 2005:物联网》中,对物联网支持技术及未来的发展趋势进行了较为完整的描述。

2009 年,欧盟制定了物联网行动方案,推出物联网标准战略,确保物联网的可信度、接受度和安全性。

2010 年,美国,中国,德国,日本等多个国家将物联网的发展提到了战略高度,并在政策层面对其进行了积极的扶持。

2014 年,韩国公布了《物联网基本规划》,明确了 “引领超链接数字革命” 的物联网战略发展目标。

2015 年,德国发布了 “工业 4.0” 战略,物联网技术在工业领域得到广泛应用。

2015 年,国际电信联盟在《ITU 互联网报告 2005:物联网》中正式提出 “物联网” 这一新的概念。

2016 年,全球出现了第一起物联网大规模攻击事件,通过 Mirai 物联网病毒利用已知或未知的漏洞感染大量的物联网终端。

2019 年,欧洲联盟出台《欧洲工业战略》,将工业物联网列为其中一项重点内容。

2020 年,美国国家标准技术研究院(NIST)发布《物联网设备安全性指南》。

2022 年,欧洲联盟颁布《数字化欧洲 2022 年战略》,提出了推进物联网和 5G 技术发展的计划。

1.2.2 中国发展情况

物联网技术在中国的发展历史最早可以追溯到上世纪末期,当时中国开展了许多相关项目和试点,如 “天网工程”“数字城市” 等,但是直到近年物联网技术才得到快速的发展。

2008 年,“中国移动政府工作会议” 指出以移动技术和物联网为标志的新型信息技术正在兴起。

2009 年,IBM 公司 CEO 彭明盛首次引入 “智慧地球” 这个理念,并提议政府投资智能基建设施,美国也把新能源与物联网作为促进经济增长的两个重点。

2009 年,无锡市成立 “感知中国” 研发中心,中国科学院、电信运营商、多所大学在无锡建立了 “物联网研究院”。

2014 年:国家工信部印发《物联网产业发展规划》,明确了物联网产业发展的目标和任务。

2017 年:国务院发布《新一代人工智能发展规划》,将物联网与人工智能作为两大核心技术支撑。

2018 年起,杭州市启动了城市区域物联网的规划与建设,到现在为止,已经实现了城市区域 700 公里范围内的 LoRa 技术的全覆盖。

2020 年:国务院发布《数字经济发展战略》,明确物联网产业是数字经济的重要组成部分。

2021 年:中国发布《全国物联网产业发展白皮书(2021)》,总结了物联网产业发展的历程和成就,并提出未来发展的方向和目标。

2022 年底,中国移动物联网连接数比 2021 年底净增 4.47 亿,达 18.45 亿,占世界总接入量的 70%。

2024 年 11 月 3 日,第九届世界物联网大会在北京国家会议中心开幕,并发布《世界万物智联数字经济白皮书》。数据显示,2024 年中国建成承载物联网的 5G 基站有望超过 430 万个,“物” 的连接数有望突破 30 亿。

1.3 物联网的体系结构

物联网的体系结构包括:感知层、网络层、平台层、应用层。

1.3.1 感知层

感知层是物联网的皮肤和五官,主要功能是据采集与环境交互,包括传感器(温湿度、光照等)、执行器(电机、继电器)、嵌入式设备(如ESP32、STM32)、RFID 标签、二维码等设备和技术。通过传感器采集各种模拟或数字信号,并进行预处理和滤波,以提高数据质量和可靠性。数据采集数据传输通信协议将采集到的数据通过有线或无线方式传输到上位机或数据中心,以实现远程监控和管理。为保证数据传输的可靠性和实时性,需选择合适的通信协议,如 MQTT、CoAP等。

传感器种类及功能原理:

  • 物理传感器:用于测量物理量,如温度、压力、湿度、光强等。通过物理效应将被测物理量转化为电信号输出。
  • 化学传感器:用于检测化学物质或气体浓度。利用化学反应原理将被测物质浓度转化为电信号输出。
  • 生物传感器:用于生物医学领域,如血糖、血氧、心率等监测。利用生物敏感元件将被测生物量转化为电信号输出。
  • 新型传感器:包括纳米传感器、智能传感器等,具有更高的灵敏度、精度和集成度。
1.3.2 网络层

网络传输层是物联网的神经中枢和大脑,负责数据传输和处理感知层获取的信息,包括互联网、移动通信网、广电网等各种通信网络。该层的核心任务是确保数据能够稳定、快速地传输到相应的服务器或云平台,保证通信的可靠性和实时性。

网络通信技术可分为:

  • 有线通信网络技术
    • 以太网技术:目前应用最广泛的局域网技术,具有传输速度快、稳定性好等特点,在物联网中常用于连接传感器和设备。
    • 光纤通信技术:以光波为载波,利用纯度极高的玻璃拉制成极细的光导纤维作为传输媒介,具有传输容量大、抗干扰性强等优点,适用于长距离、高速率的物联网数据传输。
    • 电力线通信技术:利用电力线传输数据和话音信号的一种通信方式,具有无需重新布线、覆盖范围广等优点,在智能家居等领域有广泛应用。
  • 无线通信网络技术
    • Wi-Fi 技术:一种允许电子设备连接到一个无线局域网的技术,具有传输速率高、覆盖范围广等优点,在物联网中常用于设备间的无线通信。
    • 蓝牙技术:一种支持设备短距离通信的无线电技术,能在包括移动电话、PDA、无线耳机、笔记本电脑等众多设备之间进行无线信息交换,适用于物联网中的短距离无线通信。
    • ZigBee 技术:一种低功耗、低速率、短距离的无线通信技术,适用于物联网中的传感器和设备间的无线通信,具有自组织、低功耗等特点。
    • NB - IoT(窄带物联网)基于蜂窝网络的低功耗、广覆盖无线通信技术,适合大规模设备连接 。例如城市中的智能水表、电表、燃气表等公用事业设备,通过 NB - IoT 网络将数据传输到管理中心,实现远程抄表和设备监控 。其特点是覆盖范围广、穿透能力强、功耗低,设备电池续航时间长 。
    • LoRa(长距离无线通信)同样是长距离、低功耗的无线通信技术,适用于对通信距离要求较高且数据传输量相对较小的场景 。在农业物联网中,用于偏远农田的传感器节点与网关之间的通信,可实现数公里甚至更远距离的稳定数据传输 。

物联网通信协议的标准化进程正在不断推进,各大标准化组织如 IEEE、ETSI、3GPP 等都在积极制定相关标准,以推动物联网的互联互通和规模化发展。常见的物联网通信协议有 MQTT 和 CoAP。

  • MQTT:一种基于发布 / 订阅模式的轻量级通信协议,适用于设备间消息传递和物联网数据传输,具有低开销、低带宽占用等优点。
  • CoAP:一种专为物联网设计的通信协议,具有轻量级、低功耗等特点,适用于资源受限的物联网设备间的通信。

为提高物联网传输层的性能,可采用以下策略:

  • 数据压缩技术:采用数据压缩技术可以减少数据传输量,降低网络带宽占用,提高物联网传输层的传输效率。
  • 拥塞控制策略:通过合理控制数据包的发送速率和数量,避免网络拥塞和数据丢失,提高物联网传输层的可靠性和稳定性。
  • 加密与认证技术:采用加密与认证技术可以保护物联网数据的安全性和隐私性,防止数据被窃取或篡改。同时,认证技术还可以确保设备间的合法通信和身份识别。
1.3.3 平台层

平台层介于感知层和应用层之间是物联网的核心数据处理中心,负责数据的解析、分析和处理以及为应用层提供各种服务和能力支撑。平台层接收网络层传输的数据,进行存储、管理和分析,数据处理可能包括数据清洗、数据转换、数据聚合等步骤。它使用抽象化的业务逻辑和标准化的数据模型,支持快速设备接入和模块化应用开发‌

  • 数据存储物联网产生的海量数据需要可靠的存储方式 。云存储是常用的方式之一,通过云计算平台提供的大规模存储资源,可存储结构化和非结构化数据 。例如在智能电网中,大量的电力数据,包括用户用电数据、电网设备运行数据等,都存储在云平台上 。同时,也有一些本地存储方案,用于对数据安全性、实时性要求极高的场景,如某些工业生产中的实时数据存储。
  • 数据处理与分析利用大数据处理技术、机器学习算法等对采集到的数据进行清洗、转换、分析 。例如在智能城市的交通数据分析中,通过对大量交通流量数据的分析,可以预测交通拥堵情况,优化交通信号灯配时 。机器学习算法还可用于设备故障预测,通过分析设备运行的历史数据,提前发现设备可能出现的故障隐患 。
  • 能力开放平台层为应用层提供一系列的能力接口,如数据接口、算法接口、应用开发框架等 。第三方开发者可以基于这些接口开发各种物联网应用,降低应用开发的难度和成本 。例如在智能医疗平台上,向医疗设备厂商、医疗应用开发者开放数据接口,方便他们开发与医疗设备交互、数据分析等相关的应用 。

1.3.4 应用层

应用是物联网发展的驱动力和目的。应用层的主要功能是把感知和传输来的信息进行分析和处理,做出正确的控制和决策,实现智能化的管理、应用和服务,这一层解决的是信息处理和人机界面的问题。

  • 管理服务层:通过中间件软件实现感知硬件和应用软件之间的物理隔离和无缝连接,提供海量数据的高效汇聚和存储,通过数据挖掘、智能数据处理计算等为行业应用层提供安全的网络管理和智能服务。
  • 行业应用层:可为不同行业提供物联网服务,可以是智能交通、智能教育、智能警务、智能医疗、智能家居、智能物流等。该层主要由应用层协议组成,不同的行业需要制定不同的应用层协议。

二、物联网关键技术

2.1 传感技术

传感技术作为信息技术的三大支柱之一,是实现物联网的基础,通过传感技术可以采集各种物理量、化学量、生物量等信息。根据传感器的工作原理可以分为物理传感器、化学传感器、生物传感器等。传感技术广泛应用于工业、农业、医疗、环境监测等领域,如温度传感器、压力传感器、光敏传感器等。

2.2 数据处理与分析技术

数据处理与分析技术是指通过计算机对采集到的数据进行处理、分析和挖掘,提取有用信息的过程。数据处理与分析技术可以分为数据预处理、数据挖掘、数据可视化等。在物联网中,数据处理与分析技术可以帮助人们对海量数据进行分析和处理,提高数据的利用价值。

2.3 安全隐私保护技术

随着物联网的发展,安全隐私保护问题越来越受到人们的关注,安全隐私保护技术可以有效保障物联网中信息的安全和隐私。安全隐私保护技术可以分为数据加密技术、访问控制技术、安全审计技术等。在物联网中,安全隐私保护技术可以应用于数据的传输、存储、处理等各个环节,确保信息的安全性和隐私性。

三、物联网硬件设备介绍

3.1 微控制器(MCU)

微控制器是专为特定任务设计的嵌入式系统,具有以下特点:

硬件特性:

  1. 低功耗处理器(通常为ARM Cortex-M系列)
  2. 有限的存储资源(KB级RAM和Flash)
  3. 丰富的GPIO接口
  4. 常见通信接口(I2C、SPI、UART等)

开发特点:

  1. 通常使用C/C++开发
  2. 实时性高,响应速度快
  3. 适合资源受限的嵌入式应用

典型应用场景:

  1. 智能家居设备控制
  2. 工业传感器节点
  3. 可穿戴设备

3.2 单板计算机(SBC)

单板计算机是功能完整的计算机系统,主要特点包括:

硬件特性:

  1. 较强的处理器(如ARM Cortex-A系列)
  2. 较大的内存和存储(GB级RAM,支持SD卡存储)
  3. 完整的操作系统支持(如Linux)
  4. 丰富的扩展接口(USB、HDMI等)

开发特点:

  1. 支持多种编程语言(Python、Java等)
  2. 开发环境与PC类似
  3. 适合复杂应用场景

典型应用场景:

  1. 智能网关
  2. 边缘计算节点
  3. 多媒体物联网应用

四、物联网应用

4.1 工业物联网(lloT)

关键应用方向:

智能制造: 

  • 设备状态监控:通过传感器实时监控设备的运行状态,及时发现和解决潜在问题,提高设备利用率和生产效率。
  • 预测性维护:利用大数据分析和机器学习技术,对设备的运行数据进行预测和分析,提前识别设备故障风险,减少停机时间。
  • 产线自动化:通过物联网技术实现生产线的自动化控制,提高生产效率和产品质量。

数字农业:

  • 精准灌溉系统:利用传感器实时监测土壤湿度、气象条件等信息,自动调整灌溉量,提高水资源利用效率。
  • 作物生长监测:通过传感器监测作物的生长环境、营养状况等,为农民提供科学的管理依据,提高作物产量和质量。
  • 病虫害预警:利用传感器和图像识别技术,及时发现和预警病虫害,减少农作物损失。

4.2 智慧城市

典型应用案例:

  • 智能交通管理系统:通过物联网技术实现交通信号灯的智能控制、交通流量的实时监测和调度,提高交通效率,减少拥堵。
  • 环境监测网络:利用传感器网络实时监测空气质量、水质、噪音等环境指标,为城市环境管理提供数据支持。
  • 公共设施监控:通过物联网技术对城市公共设施(如路灯、垃圾桶、公园设施等)进行实时监控和管理,提高设施的运行效率和利用率。

五、物联网发展趋势

物联网作为新一代信息技术的核心组成部分,正随着技术迭代、市场需求和政策推动持续演进。未来,物联网将在技术融合、应用场景、生态构建等方面呈现以下显著发展趋势:

5.1 技术融合驱动深度创新

  1. 5G/6G与物联网的深度融合:5G网络的大带宽、低时延和广连接特性已为物联网规模化应用奠定基础,而6G技术将进一步提升通信性能,支持更高速率(如Tbps级)、更广覆盖(如空天地一体化)和更智能化的网络服务。例如,6G支持的毫秒级时延和亚米级定位精度,将推动物联网在自动驾驶、远程手术等超高可靠性场景中的落地。
  2. 边缘计算与AIoT的协同发展:边缘计算将更多计算和存储资源下沉至设备端或边缘节点,与AI技术结合形成AIoT(人工智能物联网)。通过边缘侧的实时数据处理和智能决策,物联网系统可减少对云端的依赖,提升响应速度,降低传输成本。例如,工业质检场景中,边缘AI可实时识别生产线缺陷,无需将图像数据上传云端。
  3. 区块链与可信物联网的结合:区块链技术通过分布式账本和不可篡改特性,为物联网设备身份认证、数据溯源、安全交易等提供可信基础。未来,基于区块链的物联网设备身份管理、数据共享协议将成为关键发展方向,尤其在供应链管理、能源交易等领域。

5.2 应用场景向垂直领域纵深拓展

  1. 工业物联网(IIoT)的智能化升级:IIoT将结合数字孪生、工业互联网平台等技术,实现从设备互联到全产业链协同的跃迁。例如,通过数字孪生模拟生产线运行,企业可动态优化生产计划;基于零信任安全架构的工业物联网,可保障关键基础设施的网络安全。
  2. 智慧城市向“城市智能体”演进:未来智慧城市将整合物联网、大数据和城市信息模型(CIM),构建具备自我感知、学习和决策能力的“城市智能体”。例如,通过全域传感器网络和AI算法,实现城市能源的动态调度、交通流的实时优化,甚至预测城市灾害风险。
  3. 医疗健康领域的个性化服务:可穿戴设备、植入式传感器与远程医疗系统的深度融合,将推动慢性病管理、精准医疗等服务的普及。例如,基于连续血糖监测(CGM)的物联网系统,可实时分析患者数据并提供个性化治疗方案。

5.3 绿色与可持续发展成为核心诉求

  1. 低碳物联网技术:物联网设备将采用更低功耗的芯片(如RISC-V架构)、能量收集技术(如太阳能、振动能转化)和环保材料,减少能源消耗与电子垃圾。例如,农业物联网中的太阳能传感器网络,可长期无人值守监测农田环境。
  2. 资源高效管理:通过物联网实现能源、水资源、物流等系统的智能化调控,助力“双碳”目标。例如,智能电网中的分布式能源管理,可优化光伏、风电等可再生能源的消纳效率。
  3. 循环经济与物联网追溯:借助RFID、区块链等技术,物联网可构建覆盖全生命周期的资产追踪体系,推动二手设备再利用、废弃物回收等循环经济模式。

5.4 标准化与生态共建加速推进

  1. 全球统一标准的形成:国际组织(如3GPP、IEEE、OneM2M)将持续推动物联网协议、接口、安全标准的统一,打破设备间、行业间的“数据孤岛”。例如,基于统一协议的城市物联网平台,可兼容不同厂商的智能路灯、垃圾桶等设备。
  2. 开源生态与开发者社区繁荣:开源物联网操作系统(如Zephyr、ThingsBoard)、开发工具链和云平台(如AWS IoT Core、阿里云IoT)将降低开发门槛,促进创新应用快速孵化。开发者社区(如GitHub上的物联网项目)将成为技术共享与协作的重要载体。
  3. 跨行业协作模式深化:物联网将推动“产业+技术”跨界融合,例如车企与通信运营商共建车联网(V2X)生态,医疗机构与芯片厂商联合开发医疗级传感器,形成多方共赢的商业模式。

5.5 安全与隐私保护持续强化

  1. 零信任安全架构渗透:物联网系统将全面采用零信任理念,通过持续身份认证、最小权限访问、动态安全策略等技术,防止设备被入侵或数据泄露。例如,智能家居中的摄像头设备,将基于生物识别技术仅允许授权用户访问。
  2. 隐私计算技术应用:联邦学习、多方安全计算等隐私增强技术,使物联网数据在“可用不可见”的前提下实现价值挖掘。例如,保险公司可通过匿名化的车辆行驶数据分析用户驾驶行为,而不获取个人隐私数据。
  3. 法规与合规体系完善:各国将加强物联网安全立法,如欧盟的《网络韧性法案》、中国的《数据安全法》等,推动设备制造商、服务提供商落实安全责任,形成全生命周期的安全管理体系。

5.6 元宇宙与数字孪生的虚实融合

  1. 数字孪生扩展至城市级规模:物联网作为物理世界与数字世界的连接纽带,将支撑数字孪生从单个设备、工厂扩展至园区、城市。例如,城市数字孪生可整合交通、能源、水务等物联网数据,模拟城市运行并优化决策。
  2. 元宇宙中的物联网交互:元宇宙的沉浸式体验需求将推动物联网与VR/AR、脑机接口等技术的融合。例如,通过可穿戴传感器与元宇宙平台联动,实现用户生理状态与虚拟场景的实时交互。
  3. 空间计算与物联网定位:基于UWB(超宽带)、蓝牙AoA(到达角)等技术的厘米级定位,结合空间计算引擎,可构建室内外无缝衔接的物联网定位服务,赋能导航、资产管理等场景。

5.7 伦理与社会责任日益凸显

  1. 数据伦理与公平性:物联网采集的海量数据需遵循“知情同意”原则,避免算法歧视。例如,智能招聘系统需确保基于客观数据的评估,而非隐含偏见。
  2. 设备生命周期管理:从设计、生产到报废的物联网设备全流程需考虑社会责任,例如采用模块化设计方便维修,减少电子废弃物。
  3. 普惠性服务推广:通过低成本物联网解决方案(如农村地区的低成本传感器网络),缩小数字鸿沟,促进教育、医疗等公共服务的均等化。

未来展望

物联网正从“万物互联”迈向“万物智联”,技术突破、场景创新与生态协同将推动其成为数字经济的核心基础设施。预计到2030年,全球物联网连接数将突破千亿规模,市场规模超万亿美元。然而,安全挑战、技术伦理、能耗问题等仍需持续攻克。只有平衡技术创新与社会责任,物联网才能真正释放其改变世界的潜力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值