欧式距离和曼哈顿距离

首先把公式搞出来吧,下面是二维平面的距离求解。

欧式距离: |x|= \sqrt{x^{^{2}+y^{^{2}}}}

曼哈顿距离: |x|= |x1-x2|+|y1-y2|

当然扩展到多维空间,我们也可以据需按照上面的公式来发挥了。

欧式距离:

欧式距离计算的是两个点之间的实际距离。或者用来求向量的自然长度。

曼哈顿距离:

从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”

 

通常我们用距离来判断两个物品的相似度。首先建立两个物品的向量,然后计算向量距离。距离近的就表示相似度高。

 

前面我们讲过莱文斯坦距离算法.

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值