首先把公式搞出来吧,下面是二维平面的距离求解。
欧式距离:
曼哈顿距离: |x|= |x1-x2|+|y1-y2|
当然扩展到多维空间,我们也可以据需按照上面的公式来发挥了。
欧式距离:
欧式距离计算的是两个点之间的实际距离。或者用来求向量的自然长度。
曼哈顿距离:
从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”
通常我们用距离来判断两个物品的相似度。首先建立两个物品的向量,然后计算向量距离。距离近的就表示相似度高。
前面我们讲过莱文斯坦距离算法.