搭建神经网络

该博客介绍了如何利用TensorFlow 2.3.0构建一个简单的神经网络模型,包括输入层、隐藏层和输出层。通过添加ReLU激活函数,对输入数据进行平方减0.5并加入高斯噪声。使用梯度下降优化器进行训练,以最小化预测值与实际值之间的误差。在1000次训练迭代中,损失逐渐减少,模型逐步拟合数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import tensorflow.compat.v1 as tfc
tfc.disable_v2_behavior()
import tensorflow as tf
import numpy as np
# tensorflow 2.3.0

def add_layer(inputs, in_size, out_size, activation_function=None):
    Weights = tf.Variable(tf.random.normal([in_size, out_size]))
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    Wx_plus_b = tf.matmul(inputs, Weights) + biases # y = W*x + b
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    return outputs

x_data = np.linspace(-1,1,300)[:,np.newaxis]  # 300个例子
noise = np.random.normal(0, 0.05, x_data.shape)  # 加噪声(均值,方差,格式)
y_data = np.square(x_data) - 0.5 + noise  # x_data的平方减0.5

# 搭建神经网络
# 输入层输出层有多少个属性就有多少神经元(此例各1个)
# 隐藏层假设有10个神经元
xs = tfc.placeholder(tf.float32, [None, 1])
ys = tfc.placeholder(tf.float32, [None, 1])
# 隐藏层
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# 输出层
prediction = add_layer(l1, 10, 1, activation_function=None)
# 误差
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), axis=[1]))
# 训练:从误差学习,对误差更正
train_step = tfc.train.GradientDescentOptimizer(0.1).minimize(loss)  # 0.1学习率
# 初始(重要)
init = tfc.global_variables_initializer()
sess = tfc.Session()
sess.run(init)
# 学习1000步
for i in range(1000):
    sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
    if i % 50 == 0:
        print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
0.6188716
0.009656661
0.00711929
0.006185833
0.0054736366
0.0049568852
0.004566364
0.0042579058
0.0040368345
0.0038626604
0.0037317642
0.0036194357
0.0035345475
0.0034664865
0.0034077906
0.0033406622
0.003278716
0.0032234853
0.0031807795
0.0031492526
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值