import matplotlib.pyplot as plt
import tensorflow.compat.v1 as tfc
import tensorflow as tf
import numpy as np
# tensorflow 2.5.0
# 添加层函数
def add_layer(inputs, in_size, out_size, activation_function=None):
Weights = tf.Variable(tf.random.normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases # y = W*x + b
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
x_data = np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
xs = tfc.placeholder(tf.float32, [None, 1])
ys = tfc.placeholder(tf.float32, [None, 1])
# 建立网络结构
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
prediction = add_layer(l1, 10, 1, activation_function=None)
# 计算loss并拟定训练参数
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), axis=[1]))
train_step = tfc.train.GradientDescentOptimizer(0.1).minimize(loss) # 学习率0.1
init = tfc.global_variables_initializer() # 初始化
sess = tfc.Session()
sess.run(init)
fig = plt.figure() # 建立空白图片框
ax = fig.add_subplot(1,1,1) # 图片序号
ax.scatter(x_data, y_data) # 原始数据
plt.ion() # show了以后用于连续显示
plt.show()
for i in range(1000):
sess.run(train_step, feed_dict={xs: x_data, ys: y_data}) # 训练网络
if i % 50 == 0:
# to see the step improvement
# print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
try:
ax.lines.remove(lines[0]) # 抹除上一时刻的线
except Exception: # 如果没有线
pass # 什么都不做
prediction_value = sess.run(prediction, feed_dict={xs: x_data, ys: y_data})
lines = ax.plot(x_data, prediction_value, 'r-', lw=5) # 重画线,红色,宽度5
plt.pause(0.1) # 刷新的时间间隔0.1s
结果可视化plot_result
最新推荐文章于 2024-12-29 18:00:47 发布