keras是深度学习的一种框架,底层是TensorFlow,用起来比tf简单:程序搭建比较快,缺点:运行速度慢(大概两倍)
import keras
import numpy as np
import matplotlib.pyplot as plt
# Sequential按顺序构成的模型
from keras.models import Sequential
# Dense全连接层
from keras.layers import Dense
# 使用numpy生成100个随机点
x_data = np.random.rand(100)
noise = np.random.normal(0,0.01,x_data.shape)
y_data = x_data*0.1 + 0.2 + noise
# 显示随机点
plt.scatter(x_data, y_data)
plt.show()
# 构建一个顺序模型
model = Sequential()
# 在模型中添加一个全连接层
model.add(Dense(units=1, input_dim=1)) # units输出维度1维,input_dim输入维度1维
# sgd:随机梯度下降法
# mse:均方误差
model.compile(optimizer='sgd', loss='mse') # 编译
# 训练3001个批次
for step in range(3001):
# 每次训练一个批次
cost = model.train_on_batch(x_data, y_data)
# 每500个batch打印一次cost值
if step % 500 == 0:
print('cost:', cost)
# 打印权值和偏置值
W, b = model.layers[0].get_weights()
print('W:', W, 'b:', b)
# x_data输入网络中,得到预测值y_pred
y_pred = model.predict(x_data)
# 显示随机点
plt.scatter(x_data,y_data)
# 显示预测结果
plt.plot(x_data, y_pred, 'r-', lw=3)
plt.show()
cost: 0.47467002272605896
cost: 0.04278897866606712
cost: 0.011631770059466362
cost: 0.003215295961126685
cost: 0.0009417652618139982
cost: 0.0003276181232649833
cost: 0.00016171899915207177
W: [[0.1307103]] b: [0.18539836]