keras线性回归

keras是深度学习的一种框架,底层是TensorFlow,用起来比tf简单:程序搭建比较快,缺点:运行速度慢(大概两倍)

import keras
import numpy as np
import matplotlib.pyplot as plt
# Sequential按顺序构成的模型
from keras.models import Sequential
# Dense全连接层
from keras.layers import Dense
# 使用numpy生成100个随机点
x_data = np.random.rand(100)
noise = np.random.normal(0,0.01,x_data.shape)
y_data = x_data*0.1 + 0.2 + noise

# 显示随机点
plt.scatter(x_data, y_data)
plt.show()

# 构建一个顺序模型
model = Sequential()
# 在模型中添加一个全连接层
model.add(Dense(units=1, input_dim=1))  # units输出维度1维,input_dim输入维度1维
# sgd:随机梯度下降法
# mse:均方误差
model.compile(optimizer='sgd', loss='mse')  # 编译

# 训练3001个批次
for step in range(3001):
    # 每次训练一个批次
    cost = model.train_on_batch(x_data, y_data)
    # 每500个batch打印一次cost值
    if step % 500 == 0:
        print('cost:', cost)

# 打印权值和偏置值
W, b = model.layers[0].get_weights()
print('W:', W, 'b:', b)

# x_data输入网络中,得到预测值y_pred
y_pred = model.predict(x_data)

# 显示随机点
plt.scatter(x_data,y_data)
# 显示预测结果
plt.plot(x_data, y_pred, 'r-', lw=3)
plt.show()
cost: 0.47467002272605896
cost: 0.04278897866606712
cost: 0.011631770059466362
cost: 0.003215295961126685
cost: 0.0009417652618139982
cost: 0.0003276181232649833
cost: 0.00016171899915207177
W: [[0.1307103]] b: [0.18539836]

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值