高阶图匹配

高阶图匹配是图像处理中的重要技术,通过度量点集合与点集合之间的匹配来保证旋转和尺度不变性。文章介绍了从一阶到高阶的相似性度量方法,特别是三阶匹配通过比较三角形内角来判断特征点三元组的相似性。接着,阐述了高阶图匹配的基本框架,包括局部特征提取、拓扑结构描述、数学建模、模型松弛求解和错误匹配处理,强调了超图在表示图像几何连续性上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、基于结构特征的相似性度量

      将特征看作向量空间中的点,通过计算两个点或者两个点组之间的距离来度量他们是否相似。

     一阶度量:minkowsky距离、马氏距离

     二阶度量:特征点本身有相关性,所以将特征点对之间的关系加入到相似性度量里

     高阶度量:二阶保证旋转不变性,为保证尺度不变性,度量点集合与点集合之间的匹配。 一般为三阶,常用方法是将特征点组合成三角形,通过比较三角形的三个内角来判断 两个特征点三元组是否相似。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值