罗德里格斯(Rodrigues)旋转向量与矩阵的变换

本文介绍了在三维空间中,如何使用罗德里格斯公式将旋转向量(1x3)转换为旋转矩阵(3x3)以及反之。讨论了旋转表示方法,包括围绕坐标轴的旋转和任意轴的旋转,并详细阐述了旋转角度和旋转轴的计算。此外,提到了OpenCV库中实现Rodrigues变换的函数及其应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

     在做双目立体视觉深度图像生成的时候,遇到旋转向量(1x3)与旋转矩阵(3x3)的概念,得知二者可以通过罗德里格斯相互转化。

1.旋转的表示

     处理三维旋转问题时,通常采用旋转矩阵的方式来描述旋转变换。旋转矩阵有以下两种方式得到。

      物体在三维空间中的旋转,可以被分为解为在直接坐标系下,分别先后围绕x,y,z坐标轴旋转得到。旋转的角度也就是我们常听到的角度roll,pitch,yew。如果已知这几个角度,就可以直接通过每一步的矩阵相乘得到整个旋转矩阵。

                              R=R(yaw)R(pitch)R(roll)

R = R ( y a w ) R ( p i t c h ) R ( r o l l )

       旋转矩阵还可以理解为围绕空间中某一个向量,直接一次旋转某一个角度得到。在openCV相机标定时得到的旋转向量 r 就是用这种方式。即由旋转变量来描述。

2.旋转向量得到旋转矩阵

       旋转向量的长度(模)表示绕轴逆时针旋转的角度(弧度)。旋转向量与旋转矩阵可以通过罗德里格斯(Rodrigues)变换进行转换。

       旋转角度  θ=norm(r)       (norm表示求向量r的模长)
       单位向量  (rx,ry,rz)=r/θ  
       旋转矩阵 

<think>嗯,用户问的是如何通过罗德里格斯变换得到的旋转矩阵进行反变换。也就是说,用户已经有一个旋转矩阵,想要得到对应的旋转向量或者旋转轴和角度。这可能是因为用户在使用OpenCV或者类似库时,需要处理外参中的旋转参数,可能在做相机标定、三维重建或者姿态估计相关的工作。 首先,我得回想一下罗德里格斯公式的原理。罗德里格斯公式可以将旋转向量转换为旋转矩阵,反过来,也可以从旋转矩阵中提取出旋转轴和旋转角度。用户可能已经知道如何从旋转向量转旋转矩阵,现在需要逆向的过程。 接下来,我需要考虑用户的实际需求。用户可能在处理相机外参时,得到了旋转矩阵,但需要将其转换回旋转向量形式,比如在使用OpenCV的某些函数时,或者需要存储更紧凑的旋转表示。这时候,了解如何从旋转矩阵反推出旋转轴和角度就非常重要了。 然后,我需要回忆具体的数学步骤。旋转矩阵旋转向量的逆变换涉及到几个关键步骤:首先,计算旋转角度θ,可以通过矩阵的迹来求得。然后,确定旋转轴的方向,这需要从旋转矩阵的反对称部分提取。同时需要注意当θ为0或π时的特殊情况,这时候旋转轴可能无法唯一确定或者需要特别处理。 此外,用户可能关心代码实现,比如如何用Python或C++实现这个过程。因此,在解释数学步骤之后,提供一个代码示例会很有帮助。特别是要处理可能的边缘情况,比如θ接近0的情况,这时候旋转轴可能不稳定,需要特殊处理。 还需要考虑数值稳定性问题。当θ非常小的时候,直接用矩阵的迹计算角度可能会有精度问题,或者旋转轴的计算可能因为分母接近零而出错。这时候可能需要采用不同的方法来处理,比如使用矩阵的元素来直接计算旋转轴,或者使用其他数学技巧来避免数值不稳定。 最后,验证方法的正确性也很重要。用户可能需要将反变换后的旋转向量再次应用罗德里格斯变换,检查是否得到原来的旋转矩阵,以确保逆变换的正确性。这可以通过对比原始矩阵和重构矩阵的元素差异来实现,确保误差在可接受范围内。 总结一下,用户需要的是从旋转矩阵旋转向量的逆变换方法,包括数学推导和代码实现,同时注意特殊情况和数值稳定性。确保回答清晰、步骤明确,并提供验证方法,帮助用户正确应用在实际项目中。</think>### **罗德里格斯变换的逆过程:从旋转矩阵反推旋转向量** 通过罗德里格斯公式(Rodrigues' formula),可以将 **旋转向量(轴角表示)** 转换为 **旋转矩阵**。而逆过程则是从旋转矩阵 $R$ 中提取 **旋转轴 $\mathbf{u}$** 和 **旋转角 $\theta$**,最终得到旋转向量 $\mathbf{r} = \theta \mathbf{u}$。以下是详细步骤和注意事项: --- ### **1. 核心公式** 若已知旋转矩阵 $R$,其对应的旋转向量 $\mathbf{r}$ 满足: $$ R = \cos\theta \cdot I + (1 - \cos\theta) \mathbf{u} \mathbf{u}^T + \sin\theta \cdot [\mathbf{u}]_{\times} $$ 其中: - $\mathbf{u} = [u_x, u_y, u_z]^T$ 是单位旋转轴 - $[\mathbf{u}]_{\times}$ 是 $\mathbf{u}$ 的叉乘矩阵 - $\theta$ 是旋转角度 --- ### **2. 反推旋转角度 $\theta$** 通过 **矩阵的迹** 计算旋转角度: $$ \text{tr}(R) = R_{11} + R_{22} + R_{33} = 1 + 2\cos\theta $$ 因此: $$ \theta = \arccos\left( \frac{\text{tr}(R) - 1}{2} \right) $$ #### **特殊情况处理**: - 若 $\theta \approx 0$,则旋转轴 $\mathbf{u}$ 任意(无实际旋转) - 若 $\theta \approx \pi$,需通过其他方法确定 $\mathbf{u}$(见后文) --- ### **3. 反推旋转轴 $\mathbf{u}$** 旋转轴 $\mathbf{u}$ 是矩阵 $R$ 的特征值为 1 的特征向量(需单位化)。 #### **方法一:反对称矩阵分解** 计算 $R - R^T$ 的反对称矩阵: $$ R - R^T = 2\sin\theta \cdot [\mathbf{u}]_{\times} $$ 提取 $\mathbf{u}$: $$ \mathbf{u} = \frac{1}{2\sin\theta} \begin{bmatrix} R_{32} - R_{23} \\ R_{13} - R_{31} \\ R_{21} - R_{12} \end{bmatrix} $$ #### **方法二:直接解特征向量** 解方程 $(R - I)\mathbf{u} = 0$,并对 $\mathbf{u}$ 单位化。 --- ### **4. 旋转向量 $\mathbf{r}$ 的构造** 最终旋转向量为: $$ \mathbf{r} = \theta \cdot \mathbf{u} $$ --- ### **5. 代码实现(Python示例)** ```python import numpy as np import cv2 def rotation_matrix_to_rvec(R): # 计算旋转角度 θ theta = np.arccos((np.trace(R) - 1) / 2) if np.isclose(theta, 0): # θ ≈ 0,返回零向量 return np.zeros(3) elif np.isclose(theta, np.pi): # θ ≈ π,需特殊处理 # 通过 R + I 的非零列确定旋转轴 A = R + np.eye(3) u = A[:, np.argmax(np.sum(A**2, axis=0))] u = u / np.linalg.norm(u) return theta * u else: # 常规情况:通过反对称矩阵提取旋转轴 antisym = (R - R.T) / 2 u = np.array([antisym[2,1], antisym[0,2], antisym[1,0]]) u = u / (np.sin(theta) + 1e-10) # 避免除零 return theta * u # 验证:将 R 转换为 rvec,再转换回 R_hat R = cv2.Rodrigues(np.array([0.5, 0.3, 0.1]))[0] # 任意旋转矩阵 rvec = rotation_matrix_to_rvec(R) R_hat = cv2.Rodrigues(rvec)[0] print("重构误差:", np.linalg.norm(R - R_hat)) # 应接近 0 ``` --- ### **6. 注意事项** 1. **θ ≈ 0 或 θ ≈ π 的稳定性** - 当 $\theta$ 接近 0 时,旋转轴 $\mathbf{u}$ 的方向可能不稳定(因 $\sin\theta \approx 0$ 导致除零风险)。 - 当 $\theta$ 接近 $\pi$ 时,需通过 $R + I$ 的列向量确定 $\mathbf{u}$(见代码中的特殊处理)。 2. **OpenCV的实现差异** OpenCV的 `cv2.Rodrigues()` 函数内部已处理所有边界情况,建议优先使用库函数。 3. **多解性问题** - 旋转向量 $\mathbf{r}$ 和 $-\mathbf{r} + 2k\pi\mathbf{u}$ 对应相同的旋转矩阵。 - 通常选择 $\theta \in [0, \pi]$ 的解。 --- ### **总结** 从旋转矩阵反推旋转向量的关键是 **计算旋转角度和旋转轴**,需注意边界条件和数值稳定性。该过程在相机标定、三维姿态估计等领域有广泛应用,例如从外参矩阵中提取可解释的旋转参数。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值