论文笔记:《FoldingNet:Point Cloud Auto-encoder via Deep Grid Deformation》

FoldingNet论文介绍了通过深度网格变形处理不规则点云的自编码器,提出新的图基编码器和折叠基解码器。相比体素化方法,该方法效果更优。主要贡献包括:端到端点云自编码器、折叠解码操作以重新排序点云,以及在无监督方法中展现出的高精确度分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Introduction:

本篇论文,介绍了一个通过深度网格变形的点云自编码器(AE)。
提出了新的端到端graph-based编码器和folding-based解码器。

因为点云结构是不规则的,一般由稀疏的三维点表示,很难应用到传统的深度学习的框架中(比如CNN中,每个样本点的相邻样本点需要在固定的一个地方以便于卷积,但是点云中的样本点做不到这样),一种解决方法是将点云体素化来模拟图像,但是这种方法存在很多缺陷,代价比较大。作者在本文提出的操作,就是用来解决点云不规则结构带来的问题,且比之前的方法效果要好。

Contributions:

  1. 训练了一个端到端的深度自编码器,来直接作用在无序点云上;
  2. 提出了一个新的解码操作folding,为重构的点云排序;
  3. 做实验,可知,相比其他无监督的方法,folding分类的精确度更高;
    ——————————————————————————————————————

Figures and Tables

Table 1:通过folding操作将2D样本点粘回了物体表面
t1
第一列输入的是从ShapeNet数据集里的原始点云样本,
第二列,在解码过程中2D网格点被折叠了&#x

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值