关于使用opencv的提速(三)(GPU加速)

本文探讨了通过GPU加速提升OpenCV图像处理效率的方法。重点介绍了NVIDIA显卡在OpenCV中的应用及其配置流程,并讨论了对于ATI显卡的支持方案。此外还提及了结合OpenCL实现跨平台GPU加速的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我次奥我发现这个链接抄我的!!!!

http://www.myexception.cn/program/1615844.html

--------------------------------分割线以下是正文--------------------------------------

相对于前两章的利用x86转为x64提速,以及多线程的openmp提速

根据自己前两天的见识及理解(x86转为x64提高一倍的速度,openmp将cpu的利用率从百分之20多提高到百分之百)

利用GPU提速至少可以提高5~10倍的运算速度


那么,opencv的提速具体怎样的呢

首先我们知道主流的显卡是NviDIA和ATI两种,而opencv的gpu单指nvidia显卡模块,而且只支持一部分

支持的显卡类型:https://developer.nvidia.com/cuda-gpus

opencv+cuda 配置方式: http://blog.csdn.net/shuxiao9058/article/details/7526795


如果你是ATI显卡,或者用的不是电脑又想GPU加速怎么办呢?

现在正在做的OCL部分,将opencv和opencl结合起来,有跨平台的作用,可以应用到ATI显卡上,当然,这部分做的比opencv的gpu部分要晚一些,所以使用最新的opencv比较好,截止到我写这篇blog,现在最新的是opencv2.4.8


图形图像的基础要求很高,运算量也是很大的,希望大家能够多种方法共同使用,达到最快的速度效果~


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值