
ML&DL-业务-推荐系统
Zero-One-0101
小菜鸟一枚,正在成长中!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
推荐算法---FM,协同过滤
文章目录目录1.FM算法产生背景2.FM算法模型3.FM算法VS其他算法4.推荐算法总结目录1.FM算法产生背景在传统的线性模型如LR中,每个特征都是独立的,如果需要考虑特征与特征直接的交互作用,可能需要人工对特征进行交叉组合;非线性SVM可以对特征进行kernel映射,但是在特征高度稀疏的情况下,并不能很好地进行学习;现在也有很多分解模型Factorization model如矩阵分解MF...原创 2019-03-31 19:02:51 · 2155 阅读 · 0 评论 -
FM系列算法解读(FM+FFM+DeepFM)
在计算广告中,CTR是非常重要的一环。对于特征组合来说,业界通用的做法主要有两大类:FM系列和Tree系列。这里我们来介绍一下FM系列。 在传统的线性模型中,每个特征都是独立的,如果需要考虑特征与特征之间的相互作用,可能需要人工对特征进行交叉组合。非线性SVM可以对特征进行核变换,但是在特征高度稀疏的情况下,并不能很好的进行学习。现在有很多分解模型可以学习到特征之间的交互隐藏关系,基本上...转载 2019-03-31 21:19:59 · 588 阅读 · 0 评论 -
推荐算法--总结(08)
一、推荐系统结构二、推荐引擎算法(Algorithm)1、协同过滤推荐算法1.1 关系矩阵与矩阵计算1.1.1 用户与用户(U-U矩阵)1.1.2 物品与物品(V-V矩阵)1.1.3 用户与物品(U-V矩阵)1.1.4 奇异值分解(SVD)1.1.5 主成分分析(PCA)目标:PCA目标是使用使用另一组基去重新描绘得到的数据空间,新的基要尽可能揭示原有...原创 2019-03-31 21:02:15 · 1203 阅读 · 0 评论 -
推荐系统读书笔记(推荐系统实战)
随着信息技术和互联网的发展,人们逐渐从信息匮乏的时代走入了信息过载的时代。在这个时代,无论是信息消费者还是信息生产者都遇到很大的挑战;对于消费者,从大量信息中找到自己感兴趣的信息是一件非常困难的事情;对于信息生产者,让自己的信息脱颖而出,受到广大用户的关注,也是一件非常困难的事情。推荐系统就是解决这一矛盾...转载 2019-03-31 20:52:19 · 693 阅读 · 0 评论 -
推荐算法--其他信息(07)
文章目录目录1.利用上下文信息1.1时间上下文1.2地点上下文2.利用网络社交数据2.1 获取网络社交数据途径2.2 社交网络数据2.3 基于社交网络的推荐2.4 推荐算法2.5 给用户推荐好友目录1.利用上下文信息1.1时间上下文用户的兴趣是随着时间变化的,三天打鱼两天晒网是最好的例子物品也是有生命周期的,新鲜的事物会很热门,但是十年前的就不一定热门了季节效应,夏天吃冰激凌,冬天...原创 2019-03-31 20:50:32 · 216 阅读 · 0 评论 -
推荐算法--推荐系统架构(06)
外围架构一般来说,每个网站都有一个 UI 系统,UI 系统负责给用户展示网页并和用户交互。网站会通过日志系统将用户在 UI 上的各种各样的行为记录到用户行为日志中。从上面的结构可以看到,除了推荐系统本身,主要还依赖两个条件--界面展示和用户行为数据。推荐系统架构推荐系统联系用户和物品的主要方式如下图所示。如果将这三种方式都抽象一下就可以发现,如果认为用户喜欢的物品也是一种用户特征,或者和用户兴...转载 2019-03-31 20:39:14 · 1233 阅读 · 0 评论 -
推荐算法--时效性(05)
时效性推荐系统应该考虑时间效应,因为用户的兴趣是有时间变化的。用户一年前喜欢的东西现在不一定感兴趣,相比于推荐过去喜欢的物品,推荐用户近期喜欢的物品更有参考价值。而在新闻更是如此,推荐过去跟用户兴趣一致的新闻已经失去了意义。每个系统时间效应的大小不同,比如时间对电影的作用就没有新闻那么明显。要考虑时效性,必须加入时间参数,比如三元组(用户,物品,时间)代替简单的二元组(用户,物品)。给定时间 T ...转载 2019-03-31 20:33:44 · 4162 阅读 · 1 评论 -
推荐算法--利用用户标签数据(04)
文章目录流行的推荐系统通过3种方式联系用户兴趣和物品(1):利用用户喜欢过的物品,给用户推荐与他喜欢过的物品相似的物品,这是基于物品的算法。 (2):利用和用户兴趣相似的其他用户,给用户推荐那些和他们兴趣爱好相似的其他用户喜欢的物品,这是基于用户的算法。 (3):通过一些特征(feature)联系用户和物品,给用户推荐那些具有用户喜欢的特征的物品。 特征有不同的表现形式,可以是物品的...转载 2019-03-31 20:24:50 · 767 阅读 · 0 评论 -
推荐算法--推荐系统冷启动问题(03)
文章目录目录1.什么是冷启动问题?1.1冷启动问题1.2 冷启动问题的分类1. 用户冷启动2 物品冷启动3 系统冷启动2.如何解决冷启动问题?2.1利用用户注册信息2.2选择合适的物品启动用户的兴趣2.3利用物品的内容信息2.4 发挥专家的作用目录1.什么是冷启动问题?1.1冷启动问题对于一个新用户,新物品或者新系统,在没有大量的用户历史数据的情况下,如何如果在一开始的阶段就希望有个性化...原创 2019-03-31 20:21:33 · 497 阅读 · 0 评论 -
推荐算法--利用用户行为数据(02)
文章目录目录1.什么是用户行为数据?1.1用户行为分类2.用户行为数据如何使用?2.1 用户活跃度和物品流行度的分布2.2 用户活跃度和物品流行度的关系2.3 协同过滤算法3.实验设计和算法评测4.基于邻域的的推荐算法4.1 基于用户的协同过滤算法4.2 基于物品的协同过滤算法4.3 userCF和itemCF的比较5.基于隐语义模型的推荐算法6.基于图模型的推荐算法目录1.什么是用户行为数据...原创 2019-03-31 20:11:11 · 1915 阅读 · 0 评论 -
推荐算法概述(01)
1.什么是推荐系统用户没有明确的需求,你需要的是一个自动化的工具,它可以分析你的历史兴趣,从庞大的电影库中找到几部符合你兴趣的电影供你选择。这个工具就是个性化推荐系统。推荐系统的主要任务 推荐系统的任务就是联系用户和信息,一方面帮助用户发现对自己有价值的信息,另一方面让信息能够展现在对它感兴趣的用户面前,从而实现信息消费者和信息生产者的双赢 推荐系统与搜索引擎的区别 和搜索引擎一样,推荐...原创 2019-03-31 19:08:27 · 874 阅读 · 0 评论 -
FM,FFM及其实现
在推荐系统和计算广告业务中,点击率CTR(click-through rate)和转化率CVR(conversion rate)是衡量流量转化的两个关键指标。准确的估计CTR、CVR对于提高流量的价值,增加广告及电商收入有重要的指导作用。业界常用的方法有人工特征工程 + LR(Logisti...转载 2019-04-15 08:06:57 · 1331 阅读 · 0 评论